plasma and urine testosterone incremental changes after 4 days of HCG for all patients, suggesting either urine or plasma testosterone measurements under these conditions are suitable indices of testicular function. Basal levels of urine testosterone were no direct guide as to expected response to 4 days of HCG.

Eight children with normal pubertal development on follow-up and 3 children with constitutional delayed puberty had base-line plasma testosterone and 4-hour levels after a single injection of HCG (1500 units), directly proportional to their maturational status (Tanner I–V). The less mature (Tanner I–II) had very low basal plasma testosterone levels which did not change significantly at 4 hours. Good responses 24 to 48 hours after the single injection of HCG were, however, shown. This may be a useful alternative test of gonadal function to the 4-day stimulation test.

Congenital postural scoliosis. P. M. Dunn.
University of Bristol, Department of Child Health, Southmead Hospital, Bristol.

Between 1960 and 1966, 19 infants were observed to have a smooth persistent, lateral curvature of the spine without bony malformation soon after birth (Dunn, 1969). 9 (47%) of these infants presented by breech at delivery. 2 infants, both born to women with marked oligohydramnios, died shortly after birth; their spines were examined closely at necropsy and the presence of scoliosis without malformation was confirmed.

Of the 19 cases of scoliosis, 9 were noted during a personal study of 6756 infants born consecutively in hospital during a 3-year period (Dunn, 1972), giving an incidence of approximately 1/1000. (The true incidence may be only half as great, as this was a selected hospital population.) 8 of these 9 infants (all without teratological malformation) had associated postnatal deformities (P <0.0001) including plagiocephaly (P <0.0001), facial deformities (P = 0.0002), contracture of the sternomastoid muscle (P <0.0001), congenital dislocation of the hip (P <0.0001), and congenital deformities of the feet (P = 0.0025). In 2 cases there was unilateral dislocation of the hip on the side of the convexity of the curve. These facts, taken together with other clinical observations regarding these cases, and the well known high rate at which spontaneous resolution takes place during the first 3 years of life strongly support the frequently challenged belief of the late Sir Denis Browne (1965) that scoliosis may be caused by mechanical factors responsible for persistent lateral curvature of the spine during intrauterine life.

REFERENCES

Renal function studies in first week of life. B. J. N. Z. Danesh and I. B. Houston. Department of Child Health, St. Mary's Hospital, Manchester.

Accurately timed specimens of urine were collected from newborn infants by a new technique. Collection was done continuously during the first 3 days and the 7th day of life, and blood samples were taken on the 1st, 2nd, 3rd, 5th, and 7th days; infants were studied only after an explanation to the parents and confirmation of their unqualified approval was obtained.

Renal function was studied in 23 babies, 8 term (39–41 weeks’ gestation), 8 small-for-dates (37–39 weeks’ gestation), and 7 prematures (33–36 weeks’ gestation). The three groups showed maximum clearance of creatinine and urinary excretion rate (UV) of solutes (creatinine, urea, sodium, and chloride) within the first 12 hours of life, falling considerably during the next 60 hours and partially recovering by the 7th day of life. Urine flow rate and urinary sodium excretion expressed as a percentage of filtered load (%ENa) also showed a similar pattern. Though there was a marked variation in creatinine clearance, excretion rate, and %ENa in individual infants, statistical analysis did not reveal a significant difference between the three groups.

In the infants studied there was a linear relation between %ENa and PCV, suggesting that the degree of sodium excretion is related to the size of placentofetal transfusion which occurs immediately after delivery. The rapid initial fall in %ENa may be a reflection of the postnatal need to conserve sodium as opposed to the probable intrauterine need for a large urine flow rate (and %ENa) to maintain amniotic fluid volume.

Development of mammalian fast muscle: dynamic and biochemical properties correlated. D. M. Johnston introduced by L. Taiz. Department of Child Health, the Children’s Hospital, Sheffield.

The exact cause of brain damage in phenylketonuria is not understood, and we are unable to distinguish clearly in neonates between classical phenylketonuria and variant forms in which persistent hyperphenylalaninaemia does not result in neurological injury. This makes it difficult to assess the value of dietary treatment (Birch and Tizard, 1967), to identify those infants requiring strict control of blood phenylalanine levels, and to decide when dietary control can safely be relaxed.

It has been shown (Aoki and Siegal, 1970; Swaiman, Hosfield, and Lemieux, 1968) that experimental hyperphenylalaninaemia impairs ribosomal protein synthetic activity in the developing brain of neonatal rats. This suggested to us that intracellular levels of phenylalanine might be of more direct pathophysiological significance than extracellular concentrations, and might correlate more closely with the degree of brain damage in phenylketonuria than do plasma levels.