Sugar-induced diarrhoea in children

MICHAEL GRACEY* and VALERIE BURKE

From the Gastroenterological Research Unit, Princess Margaret Children's Medical Research Foundation, Perth, Western Australia

In recent years there has been a proliferation of knowledge about normal and abnormal digestion and absorption of carbohydrates. Many of these advances have been made since Anderson's comments about sugar intolerance in her review of intestinal malabsorption in childhood published in this journal in 1966, and since Holzel's review of the problem in 1967. This review is not intended as a comprehensive survey of the vast literature on this topic, but is an attempt to summarize current knowledge of disorders of carbohydrate digestion and absorption in children. Practical rather than theoretical aspects will be emphasized. Application of this knowledge promises to be of great benefit to children throughout the world because these disorders are common and potentially lethal, but eminently treatable.

Carbohydrates are of universal dietary importance since they supply about one-half of man's caloric needs. In poorer communities they constitute an even larger proportion of the diet. The major dietary carbohydrates, starch, lactose, and sucrose, are consumed in varying proportions according to custom and age. Lactose is, of course, relatively more important in infants and young children.

In health, starch is hydrolysed in the lumen of the gut by amylases to maltose (a disaccharide), maltotriose (a trisaccharide), and limit dextrins (oligosaccharides). As pointed out by Gray (1970) this is contrary to the still widely held notion that disaccharides and monosaccharides are the final products of the hydrolysis of starch. The hydrolytic products of starch digestion are then presented to the small intestinal epithelium where mucusal disaccharidases split them further to the monosaccharides glucose, galactose, and fructose. Glucose and galactose are then transported through the epithelial cell by an energy- and sodium-dependent active transport process. This has been reviewed by Crane (1968). It has been shown recently that the intestinal transport of fructose is also an active process, but probably separate from that used by the other important dietary monosaccharides (Gracey, Burke, and Oshin, 1972).

Types of carbohydrate malabsorption

Breakdown of starch is rapid even where amylase deficiency exists in pancreatic insufficiency and no definite clinical syndrome of carbohydrate malabsorption due to amylase deficiency is recognized. On the other hand, symptoms may occur when intestinal disaccharidase activity is deficient or monosaccharide transport is impaired. Several clinical syndromes of sugar malabsorption in childhood have now been identified. These are classified in the Table.

<table>
<thead>
<tr>
<th>Type</th>
<th>Reduced disaccharidase activity</th>
<th>Impaired monosaccharide transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Sucrease-isomaltase deficiency</td>
<td>Glucose-galactose malabsorption</td>
</tr>
<tr>
<td>Secondary</td>
<td>Lactase deficiency</td>
<td>Temporary monosaccharide</td>
</tr>
<tr>
<td></td>
<td>Lactase deficiency with</td>
<td>malabsorption</td>
</tr>
<tr>
<td></td>
<td>deficiency of other disaccharidases</td>
<td></td>
</tr>
</tbody>
</table>

Symptoms of sugar intolerance

The predominant symptom of sugar intolerance in children is diarrhoea which may be very severe and life-threatening in infants and young children. Diarrhoea results from the osmotic attraction of large volumes of water to the undigested or malabsorbed sugar within the lumen of the small bowel (Torres-Pinedo, Rivera, and Fernandez, 1966). Acid metabolites produced in the large bowel by

*Adolph Basser Research Fellow of the Royal Australasian College of Physicians.
bacterial fermentation contribute to diarrhoea by further increasing osmolarity and reducing pH, thereby impairing the colonic absorption of water (Christopher and Bayless, 1971). Bacterial activity in the large bowel also produces CO₂, so that these patients characteristically pass large amounts of flatus and frequent fluid stools of low pH.

Diarrhoea is often so profuse that the stools contain no recognizable solid material and become rapidly soaked into the infant's napkin and are mistaken for urine. When occurring in a newborn baby, the diagnosis of rectovesical fistula may even be entertained (Meeuwisse and Melina, 1969). Sugar malabsorption should be suspected in any acutely ill and dehydrated child; digital examination of the rectum in such circumstances will cause the passage of fluid stool containing excessive amounts of sugar and so allow the diagnosis to be made. In older children the clinical pattern resembles that in adults where bloating, flatulence, and abdominal cramps are more usual and severe diarrhoea is rare.

Diagnosis. The diagnosis of sugar intolerance in childhood is relatively simple. A careful assessment of the symptoms and the dietary history should raise the suspicion of sugar-induced diarrhoea which can then be documented as discussed below.

The Clinitest* method (Kerry and Anderson, 1964) is simple and reliable if done adequately, and estimates the amount of reducing substances in the stool. Normally, there are only traces of sugar in the stools of infants and children, and more than 0.5% is excessive. This method has the advantage of being convenient and is appropriate for immediate testing of the stools in the ward, consulting room, or even under field conditions. However, it must be stressed that the fluid part of the stool must be collected for testing and that the test be performed promptly to prevent bacterial degradation of carbohydrate present. Sucrose is not a reducing substance and will not be detected by this method; prior hydrolysis of the specimen with HCl is necessary if sucrose malabsorption is suspected. Adults with proven disaccharidase deficiency excrete only very small amounts of sugar in their stools (McMichael, Webb, and Dawson, 1965) so the Clinitest method is not reliable in such patients.

The total amount of reducing substances in the stool can be estimated and the individual sugars excreted in the stools can be identified by paper chromatography, but this information is not essential for adequate diagnosis and management.

Similarly, quantitative assay of stool lactic acid excretion is unnecessary.

Other tests of intestinal sugar absorption are available. These are used widely in adults but are not generally needed in children. They should be of benefit if the diagnosis of sugar intolerance is in doubt or if a congenital form of malabsorption implying long-term treatment is suspected. They are more appropriate to the investigation of older children.

Sugar tolerance tests may be useful in older patients when sugar intolerance is suspected but diarrhoea is not present at the time. Serial blood glucose levels are estimated after a loading dose of 1 to 2 g/kg of the suspected sugar and, normally, a rise of 30 mg/100 ml occurs within 2 hours. Abdominal symptoms and, in young patients, the subsequent passage of fluid, sugar-containing stools occur if clinically significant sugar intolerance exists. The response to different sugars may help distinguish different forms of sugar intolerance, for example a normal response to fructose but impaired responses to glucose and galactose in patients with glucose-galactose malabsorption.

The barium-lactose meal has been adapted for use in children by adjusting the dose of barium and lactose given according to the patient's age and weight (McNeish and Sweet, 1968). The rapid passage of the dye through abnormally dilated loops of small bowel correlates with other evidence of sugar intolerance. This method may be helpful in older patients but is rarely necessary in infants and small children.

Direct estimation of mucosal enzyme activity is rarely indicated in the diagnosis of sugar intolerance in children. Secondary lactase deficiency is by far the commonest type seen, and its clinical and pathological features are now firmly established (see below). Consequently, a confident diagnosis can usually now be made on the clinical features, the demonstration of excessive amounts of reducing substances in the stools by the Clinitest method, and the subsequent prompt response to removal of lactose from the diet. Not only is biopsy and enzyme assay unnecessary in such patients, but it exposes them to unjustifiable risks. Furthermore, the mere demonstration of depressed enzyme activity in a tiny piece of mucosa from the upper gut does not necessarily mean sugar intolerance, a clinical concept implying the production of symptoms after ingestion of the offending sugar (Townley, 1966). These remarks apply particularly to disorders such as coeliac disease where the morphological changes are known to be most marked in the proximal intestine (Rubin et al., 1960). Disaccharid-
dase assays should be reserved for cases in which the diagnosis is causing doubt and concern or where a life-long congenital disorder such as sucrase-isomaltase deficiency is suspected.

Tests of sugar uptake by biopsy specimens of small bowel tissue are, at present, appropriate for research rather than routine diagnosis. They have been used to show impaired uptake of glucose and galactose in glucose-galactose malabsorption (Elsas et al., 1970) and may eventually be applied more widely for diagnostic purposes.

The ultimate test for the diagnosis of sugar intolerance is the clinical response to removal of the suspected sugar from the diet. If the diagnosis is correct there will be a prompt improvement in the symptoms and the nature of the stools passed, followed by a rapid weight gain; if not, the diagnosis should be reconsidered.

Treatment

In all types of sugar-induced diarrhoea the treatment depends on removal of the offending sugar from the diet. Long-term dietary restriction is needed in the congenital forms of sugar intolerance, while exclusion of the sugar for a temporary but variable time is indicated in secondary sugar intolerance. This will be considered in discussion of the individual types.

The secondary types of sugar-induced diarrhoea are far more frequent than the primary forms and so will be discussed first.

Secondary disaccharidase deficiency. The disaccharidases are found in the brush border lining the luminal surface of the intestinal epithelium (Miller and Crane, 1961) and therefore are liable to be affected in any disorder in which the intestinal mucosa is damaged. Examples of this include gastroenteritis, coeliac disease, parasitic infestations, and protein-calorie malnutrition. Because lactase is the last enzyme to reach mature levels during fetal development (Sunshine and Kretchmer, 1964), prematurity is an important predisposing factor, making the risk of lactase deficiency high in outbreaks of diarrhoea in nurseries for the newborn. Normally, lactase is present in lower concentrations than the other brush border disaccharidases (Dahlqvist, 1964); it is also the last to recover completely after mucosal damage (Plotkin and Isselbacher, 1964). Consequently, lactase deficiency is the most important type of secondary disaccharidase deficiency. Sucrase deficiency of clinical importance may occur simultaneously but never exists as an isolated, secondary phenomenon.

In our experience, the commonest situation in which secondary lactase deficiency occurs is in infants and toddlers after gastroenteritis. During recovery from the initial illness the patient develops watery diarrhoea which is often yellowish and frothy when normal lactose-containing feeds are being introduced. The stools are acid and contain excessive amounts of reducing substances. The substitution of a lactose-free feed* will result in marked improvement in the stools over the next 24 hours and a rapid weight gain (Fig.). However, a complete recovery of lactase activity and the ability to tolerate dietary lactose may take some weeks or months to occur. Relapses after the reintroduction of lactose into the diet over this time should, therefore, be managed by further exclusion of dietary lactose. It must be borne in mind, of course, that patients with cow's milk protein allergy will respond in the same way since lactose-free diets are usually free of milk-protein as well. These patients can be differentiated by their responses to separate milk protein fractions and lactose (Freier and Kletter, 1972).

Temporary histological changes and generalized depression of disaccharidase activity occur in secondary lactose intolerance, but these are not specific and are not needed to reach the diagnosis. The current fashion for early introduction of solids into the infant’s diet in our community has led to earlier presentation of coeliac disease with watery stools and secondary lactose intolerance (Anderson,

*E.g. Nutramigen, Mead Johnson; Galactomix, Trufood; Low Lactose Milk Food, Cow and Gate.
and promptly the delay. An important point that factors, particularly McGlisk, 1968). However, incidence in infants and children such native in intestinal infections by malnutrition, parasitic infestations, hastened probably was observations (unpublished) leads stoma with in various countries and Danks, 1966) in infants after Burke and Anderson, 1966), and hypoglycaemia is a frequent and potentially lethal complication in malnourished patients with temporary monosaccharide malabsorption (Lifshitz et al., 1970).

Intravenous feeding is usually needed initially to correct dehydration and electrolyte disturbances. Completely carbohydrate-free feeds* can be started when the patient's condition permits. A combination of 2·5% casein and 3·4% butter fat emulsified with bile salts and with added vitamins has been used with success (Burke and Danks, 1966). Further dietary information is given by Harries and Francis (1968). Diluted cow's milk can usually be introduced gradually into the diet. Recovery may occur within a couple of weeks but may take several months.

The pathogenesis of this condition is not fully understood. Burke and Danks (1966) showed that damage to the small bowel epithelium was not responsible and that disaccharidase activity was normal. An overgrowth of bacteria in the proximal small bowel has been reported from recent studies (Gracey, Burke, and Anderson, 1969; Lifshitz et al., 1970). It seems likely that the deconjugation of bile salts by organisms not normally resident in the lumen of the gut produces interference with intestinal transport of monosaccharides (Gracey et al., 1971). In malnourished children with this disorder, it is probable that multiple, interrelated factors are operative.

Primary disaccharide deficiency.

Sucrase-isomaltase deficiency. This is a rare, congenital disorder transmitted as an autosomal recessive (Kerry and Townley, 1965) in which there is a life-long deficiency of sucrase. Symptoms appear only after introduction of cane sugar into the diet, usually at the age of 2 to 3 months.

The clinical features depend on the age of the patient, the amount of cane sugar in the diet, and

*E.g. CHO-free, Borden, U.S.A.; CFI, Nestle, Australia.
whether the patient is homozygous or heterozygous for the condition. Diarrhoea is most severe in homozygotes under the age of 6 months who have a formula sweetened with cane sugar. Diarrhoea is usually mild in adults and older children, and complaints of bloating and abdominal discomfort are common. Presentation may occasionally be delayed beyond adolescence (Neale, Clark, and Levin, 1965). Diarrhoea is rare in heterozygotes after infancy unless very large amounts of sucrose are ingested.

The patient may often be suspected of having secondary disaccharidase deficiency and will, of course, respond to the removal of all disaccharides from the diet. Diarrhoea will recur, however, when dietary sucrose is reintroduced but lactose will be tolerated without difficulty. A carefully taken dietary and clinical history should alert one to the diagnosis; the family history may also be helpful. In older children the diagnosis may be more elusive as the diarrhoea is not so severe and the clinical features may be more suggestive of coeliac disease; mild steatorrhoea sometimes occurs.

This condition requires prolonged dietary management and the diagnosis must be clinched by means of quantitative small intestinal disaccharidase assay. There is depression of sucrase and isomaltase activities with some depression of maltase levels. The mucosa is histologically normal.

Sucrose must be removed from the diet for at least the first year of life. However, variable amounts can be tolerated in later life and patients usually adjust their intake according to the production of symptoms.

Congenital lactase deficiency. While lactase deficiency in the adult is very common, particularly in certain racial groups such as Orientals (Chung and McGill, 1968), congenital lactase deficiency appears to be rare. There is considerable controversy about the pathogenesis of the adult form (Kretchmer, 1971; Neale, 1971; Rosensweig, 1971), but it is clear that this disorder appears some time after weaning. On the other hand, congenital deficiency of the enzyme implies a permanent condition, present from birth.

In the late 1950s there were several reports of diarrhoea in infants after starting milk feeds due to malabsorption of lactose. Primary lactase deficiency was presumed in these cases (Holzel, Schwarz, and Sutcliffe, 1959) but these early studies lacked the advantage of serial disaccharidase assays. Some reports in the 1960s were suggestive of lactase deficiency from birth, but they did not absolutely exclude prolonged, secondary lactase deficiency which we now know is relatively common. A recent report (Levin et al., 1970) has at last documented, without any real doubt, the diagnosis of congenital lactase deficiency in an infant first investigated at the age of 3 days and then observed for longer than 2 years. These authors illustrate the difficulties involved in adequate documentation of this rare disorder.

Congenital monosaccharide malabsorption.

Glucose-galactose malabsorption. This is a very rare autosomal recessive hereditary disorder in which there is an inability to tolerate the dietary monosaccharides, glucose and galactose (Laplane et al., 1962; Lindquist, Meeuwisse, and Melin, 1962). The defect involves the intestinal transport of these sugars, while the transport of other small molecules including fructose, amino acids, and electrolytes appears normal. Renal tubular reabsorption of glucose is also slightly defective so glycosuria may occur (Meeuwisse, 1970).

Patients develop diarrhoea within a few days of birth and rapidly become dehydrated. These patients have impaired blood glucose responses after oral loads of glucose, galactose, or lactose. They are, therefore, different from patients with isolated lactase deficiency who are able to tolerate glucose and galactose but not the disaccharide, lactose. In infants, the abnormal blood glucose response to glucose or galactose will be accompanied by the production of fluid diarrhoea with excessive amounts of sugar in the stools. When fructose is used as the sole dietary source of carbohydrate, the diarrhoea ceases abruptly. This confirms the diagnosis and, of course, distinguishes it from the secondary form of monosaccharide malabsorption mentioned earlier where all dietary sugars, including fructose, cannot be absorbed. Small intestinal histology and disaccharidase activity are normal, but this information is not needed to make an accurate diagnosis in infancy. If available, substrate transport studies (Elsas et al., 1970) will show impaired uptake of glucose and galactose by biopsy specimens of small bowel, while the uptake of fructose, which is transported by a different transport pathway (Gracey et al., 1972), is normal.

The defect in glucose-galactose malabsorption is permanent and necessitates long-term dietary restriction. Infants require a feeding formula in which fructose is the only source of carbohydrate.* The prognosis is good if the correct diagnosis is made and treatment begun early.

*E.g. Galactomin 19, Trufood.
As these patients grow up, their tolerance for dietary carbohydrates improves so that older children and adults are able to include amounts of milk, sugar, and starch in their diet depending on the severity of the symptoms produced.

REFERENCES

