and in the right 10.5 g. All tumours were shown to be neuroblastomas. The fifth child was care-
fully followed prospectively because of the extra-
ordinary family history. At the age of 5 months a
tumour mass was detected radiologically in the
thorax at the level of T8. This was resected and
shown to be yet another neuroblastoma. This
child was vigorously treated and is well, now aged
4 years (J. Chatten, personal communication, 1969).
In this family there was also evidence of neural
crest anomalies on the father's side, in that the
father and 3 of his sibs had café-au-lait spots.
This evidence makes it difficult to reject the idea
that some genetic factor may play a part in the
aetiology of at least some neuroblastomas.

Summary
Two families are reported in each of which 2
children developed neuroblastoma. These are
the only fifth and sixth families in which neuro-
blastoma has been conclusively shown to occur in
sibs.

Our thanks to Mr. A. B. Maclean of the Cumberland
Infirmary, Carlisle, to Mr. J. E. Mono, late of that
hospital, to Mr. J. Oldfield of Eston Hospital, South
Teesside, and Mr. J. Scott of the Departments of Surgery
and Child Health, University of Newcastle upon Tyne.

References
Report of a kindred with multiple disorders including neuro-
blastomas in four siblings. New England Journal of Medicine,
277, 1230.

Dodge, H. J., and Benner, M. C. (1945). Neuroblastoma of adrenal
edulla in siblings. Rocky Mountain Medical Journal, 42, 35.

Hardy, P. C., and Nesbit, M. E. (1972). Familial neuroblastoma: a
report of a kindred with a high incidence of infantile tumors.
Journal of Pediatrics, 80, 74.

Zimmerman, J. (1951). Ganglioneuroblastom als erbliche
Systemerkrankung des sympathicus. Beiträge zur pathologischen
Anatomie und zur allgemeinen Pathologie, 111, 355.

J. Wagget, Grace Ahern, and W. Ahern* Departments of Surgery, Human Genetics, and Pathology, University of Newcastle upon Tyne

Primary endocardial fibroelastosis
An inherited condition

The name endocardial fibroelastosis (EFE) was
introduced by Weinberg and Himelfarb in 1943, though
the condition had been described under other names. Gowing (1953) defined endocardial
fibroelastosis as a 'congenital condition of unknown
aetiology in which there occurs a diffuse thickening
up of the mural endocardium associated in most
cases with myocardial hypertrophy and leading to
early death'. Andersen and Kelly (1956) divided
their series of endocardial fibroelastosis into two
common varieties associated with other congenital
heart anomalies and the rarer primary form
without such anomalies, and found a familial
incidence in 23% of the primary variety. Forfar
et al. (1964), reviewing 72 cases of endocardial
fibroelastosis, found multiple familial incidences
only in the primary group which accounted for
22% of their cases. A familial incidence has also
been described in the primary form by Dordick
(1951), Winter et al. (1960), and Sellers, Keith
and Manning (1964).

The aetiology of primary EFE remains a mystery.
Possible theories fall into 3 categories (1) inflam-
matory, (2) mechanical, and (3) hereditary.

A recent and attractive view is that EFE is a
secondary response in certain individuals either to
an intrinsic inherited myocardial defect, which
results in inefficient myocardial function, or to
grossly abnormal haemodynamics associated with
a congenitally malformed heart (Moller et al., 1964).
This view accords well with the clinical and haemo-
dynamic findings in the natural history of primary
and secondary varieties.

Though a number of authors have dealt with the
hereditary element in EFE, most have not assessed
the two forms separately. Generally the mode of
inheritance has been assumed to be an autosomal
recessive type. Our experience in Edinburgh
suggests a higher incidence in families with affected
children than would be expected from recessive
inheritance. This paper deals with 4 families
having more than one child affected. In each
family at least one child has been confirmed at
catheterization or death during life.

Case material
The clinical, electrocardiographic, and patholog-
ical data are presented in the Table.

Family I. There were 3 children in this family.
The first child (Case 1, female) had the typical clinical
picture of EFE in infancy but remained well on digoxin
though with reduced exercise tolerance. Cardiac
catheterization has not been carried out. The second
child (female) is apparently normal. The third child
(Case 2, male) died in infancy after a brief but typical
illness, and primary EFE was confirmed at necropsy.
There is no family history of heart disease.

Family II. There were only 2 children in this family.
The first (Case 1, male) died suddenly and a procurator
fiscal necropsy confirmed primary EFE. The second (Case 2, female) presented with typical findings in infancy, was investigated by cardiac catheterization, and made reasonable progress on medical therapy. She died at 2½ years and primary EFE was found at necropsy. There is no family history of heart disease.

Family III. Of 9 children born to these parents, 4 are dead. The eldest died of ‘birth injuries’ at 5 weeks—no further information is available. The other 3 deceased children (Case 1, male, and Cases 2 and 3, female) all had classical clinical history and a picture of primary EFE. The third was investigated by cardiac catheterization. At necropsy all these cases showed primary EFE. The parents are normal and there is no other heart disease in the family.

Family IV. The mother of this family is the full sister of the mother in Family III. She had 2 children (both females) by different fathers. Both children (Cases 1 and 2) died in infancy with a history compatible with primary EFE. Necropsy confirmed primary EFE in both cases. There is no other heart disease in the family.

Discussion

Mitchell et al. (1966) laid down stringent criteria for the diagnosis of endocardial fibroelastosis. The disease can be diagnosed with reasonable certainty clinically, and cardiac catheterization and angiocardiography give characteristic findings. Absolute confirmation of the diagnosis however is only possible at necropsy. The endocardium is smooth, porcelain-like, and greatly thickened with proliferation of elastic and fibrous tissue and these changes frequently extend to involve the valves
Short reports

(partially the mitral and aortic). The papillary muscles and chordae tendineae are enlarged. Though all 4 heart chambers may be involved, the left atrium and left ventricle are most frequently affected. Myocardial hypertrophy or dilatation are usually present.

We are confident that our cases fulfil the criteria for primary endocardial fibroelastosis. In 8 out of 9 the diagnosis was confirmed at necropsy, and in the case of the surviving child in Family I the diagnosis was based on investigation and clinical assessment in 2 hospitals. Virus studies have been carried out in this case and were negative. Clinical electrocardiographic and radiological evidence points to EFE as the diagnosis. The 4 families reported include all the cases of primary endocardial fibroelastosis diagnosed in the Edinburgh Northern Group of Hospitals in the last 5 years. In each family more than one child has been affected, and in Families III and IV, 2 sisters have had affected children by 3 fathers. 9 affected children out of a total of 16 is a remarkably high incidence. The parents are all apparently normal. This striking familial incidence appears to indicate a strong hereditary element in the aetiology of EFE. None of these children had EFE secondary to other congenital cardiac defects, and in the overall series of children seen in this unit with EFE there is no family with more than one child affected when EFE was associated with other cardiac anomalies. The hereditary element appears confined to the primary type of EFE. Though the number of families is too small to make dogmatic statements concerning the mode of inheritance, the 1 : 1 ratio of affected and unaffected children and the equal proportion of the sexes affected at least suggests autosomal dominant inheritance.

To our knowledge there has been only one report of primary EFE in mother and child (Moller et al., 1966). The child died at 11 months in cardiac failure, and primary EFE was found at necropsy. The mother had died two weeks after delivery at 22 years of age and her necropsy also confirmed EFE.

A familial incidence of primary EFE affecting several sibs in one family has been reported frequently. Not all of these reports give full details of other sibs in the family. A scrutiny of these reports does suggest that the familial pattern occurs in primary EFE and not in the secondary variety. In 1968 Hallidie-Smith and Olsen described a family of 3 sibs apparently suffering from primary EFE who had no other intracardiac abnormalities, but had coarctation of the abdominal aorta.

There are several reports of one of monozygotic twins being affected (Kelly and Andersen, 1956; Kempton, 1959; Stadler, 1961). Ullrich (1939) described triplets of whom two were monozygotic and died of EFE. The third baby was normal and lived.

Vestermark (1962) described 2 affected sibs whose parents were first cousins, and Rafinski et al. (1967) described a similar family with the sibs dying at 10, 11, and 13 years. Consanguinity in the parents is not described in the other reported families with multiple occurrence of EFE.

In 1965 Nielsen surveyed the published reports of multiple primary EFE. These collected cases with Rafinski's families and Hallidie-Smith and Olsen's family of 3 give a total of 17 families recorded as having more than one child affected by primary EFE.

Where details of all sibs are known, the number of affected children exceeds or equals the number of normal children in each family. This accorded well with the findings in our own cases. However, too much significance must not be placed on these reports of multiple occurrence in families as there is no corresponding information in families where only one child is affected. Such families are not usually reported in the literature and the conclusions regarding incidence and inheritance must be radically different if such information were available.

Where population studies have been undertaken as in the National Institutes of Health studies in Bethesda, Maryland, an incidence of primary EFE of 1 in 4000–6000 total births has been noted, but no incidence of more than one affected child in a family found.

Primary endocardial fibroelastosis is an important cause of death in infancy and early childhood, and according to Lambert and Vlad (1958), it may account for half as many deaths in infancy as transposition of the great arteries. If it is accepted as our cases and the review of the literature suggest that heredity plays an important part in the aetiology, then correct genetic counselling is of vital importance for parents who have had an affected child. Nielsen (1965) has suggested that primary EFE is a recessive autosomal trait. Our findings favour rather the dominant autosomal mode of inheritance with incomplete penetrance. But more information, perhaps from large-scale population studies, is necessary before a definite pattern of genetic inheritance can be proved.

Summary

Four families each with more than one child affected by primary endocardial fibroelastosis are...
reviewed. The diagnosis was made at necropsy in 8 out of the 9 children. On the basis of these families and a review of reported familial incidence in the literature, it is suggested that this condition may be a dominant autosomal trait rather than a recessive autosomal as previously suggested.

The first child in Family III was under the care of Professor J. L. Henderson; the second child in Family III and the second child in Family IV were under the care of the late Professor R. W. B. Ellis. We are indebted to Dr. Douglas Bain for details of the necropsies which he carried out.

References
Kelly, J., and Andersen, D. H. (1956). Congenital endocardial fibro-elastosis. II. A clinical and pathologic investigation of these cases without associated cardiac malformations, including a report of two familial instances. Pediatrics, 18, 539.
A. S. HUNTER* and A. J. KEAY
Paediatric Department, Western General Hospital, Edinburgh.

*Correspondence to Dr. A. S. Hunter, Cardiovascular Department, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne NE4 6BE

Glomerulonephritis associated with Staphylococcus albus in a Spitz Holter valve

The association of glomerulonephritis with infection of a ventriculatrial shunt by Staphylococcus albus was first described by Black, Challacombe, and Ockenden (1965), and the presence of γ-globulin and complement in the glomeruli suggested that the glomerulonephritis was due to an immune response. The findings of immune deposits on the glomeruli in similar cases was also reported by Stickler et al. (1968) and Rames et al. (1970), who in addition described electron dense deposits in the glomeruli of their 3 patients. Staphylococcal antigen in the glomeruli of a further case of shunt nephritis was found by Kaufman and McIntosh (1971). 5 cases presented at clinical meetings were quoted by Rames et al. (1970) and 2 more cases were reported briefly by Leumann, Stauffer, and Wegmann (1971).

In this paper we report the findings in a 3-year-old boy who developed the nephrotic syndrome in association with Staph. albus infection of a ventriculatrial shunt, and describe the light and electron microscopic changes in his kidney. He had a very high level of antibodies to Staph. albus, providing, for the first time, direct evidence of antibody response to this organism.

Case report

This boy had a Spitz Holter valve inserted at the age of 10 months for hydrocephalus due to aqueduct stenosis. He had hypospadias, undescended testes, slight webbing of the third and fourth fingers, incurved little fingers, and was mentally retarded. Chromosomal analysis showed an elongated short arm of chromosome 2.

At the age of 3½ years his spleen became palpable and soon afterwards he began to sweat excessively. Three months later he was admitted to hospital for surgical correction of a strabismus. He was febrile (temp. 37-8°C), sweating, and had generalized oedema