Blood Sugar Changes in Neonatal Hyperbilirubinaemia and Phenobarbitone Therapy

C. Y. YEUNG
From the Department of Paediatrics, University of Hong Kong, Hong Kong

Yeung, C. Y. (1972). Archives of Disease in Childhood, 47, 246. Blood sugar changes in neonatal hyperbilirubinaemia and phenobarbitone therapy. A controlled study was carried out to show the effect of bilirubinaemia and phenobarbitone therapy on the blood sugar metabolism in newborn infants. In the control infants, a significant inverse correlation existed between the serum bilirubin and the blood sugar levels in the first 4 days. The liver seemed to be a factor in producing such a relation. Glucose may be a useful adjunct to the treatment of neonatal hyperbilirubinaemia. Phenobarbitone therapy had significantly raised the blood sugar levels and lowered the serum bilirubin levels in these infants. It is suggested that enhancement of liver function or induction of hepatic enzymes may be the cause.

The blood sugar level of the newborn infant may fluctuate over a wide range in the neonatal period. In a group of healthy Chinese infants, the author (Yeung, 1971) has noted that the blood sugar levels in the first week were lower than those reported in other series (Cornblath and Schwartz, 1966a; Neligan, 1965). Conditions predisposing to hypoglycaemia such as cold injury (Blattner, 1968), brain damage (Shelley and Neligan, 1966), islet cell tumour (Francois et al., 1962), and inherited metabolic disorders (Cornblath and Schwartz, 1966b), or infants who were small-for-dates (Cornblath et al., 1966) or whose mothers were diabetic (Farquhar, 1970) were not present in the groups studied. Neither was sepsis, which could result in hypoglycaemia (Yeung, 1970), a contributory cause. An important feature, however, was the prevalence of ‘idiopathic hyperbilirubinaemia’. 86% of the infants had a serum bilirubin level over 10 mg/100 ml and in a third of them it was over 15 mg/100 ml. Such a marked incidence of hyperbilirubinaemia is not encountered in most Western centres. An attempt was made in this study to find out if there was any correlation between the blood sugar and the serum bilirubin levels in the early neonatal period.

The effect of phenobarbitone therapy in lowering the serum bilirubin levels has been well documented (Lancet, 1971). Such effect has been attributed to the enhancement of liver function resulting in increased excretion of bilirubin. The liver plays an important role in the maintenance of the blood sugar level. A compound such as phenobarbitone which affects the liver functions through stimulation of the various enzyme systems (Lancet, 1971; Burns, 1964) and protein fractions (Levi, Gatmain, and Arias, 1969) may possibly be able to affect the sugar metabolism through a similar mechanism. As yet such information is lacking. A controlled study was designed here to show the effect of phenobarbitone therapy on the blood sugar level in the early neonatal period.

Materials and Methods

Group O infants (38–42 weeks) born of primigravida mothers with blood group O, Rh + and with no complications of pregnancy were allocated alternatively to a control and a treatment group. The latter received syrup phenobarbitone 5 mg 8 hourly for 3 days starting 6 to 8 hours after birth, and the former were given no medication. Infants with birthweights below 2·5 kg and those with erythrocyte glucose-6-phosphate dehydrogenase (G6PD) or pyruvate kinase (PK) deficiencies were not included, because of their known association with neonatal hyperbilirubinaemia. Infants who developed infections during the study period were also excluded because of the frequent association with hypoglycaemia (Yeung, 1970).

Daily serial blood sugar and serum bilirubin estimations were done in the morning after fasting for 3 to 4 hours with heel-pricked capillary samples for 6 days.
Blood Sugar Changes in Neonatal Hyperbilirubinaemia and Phenobarbitone Therapy

The serum bilirubin was estimated by direct spectrophotometry and the true sugar by the semi-microtechnique with Varley's modified method of Asatoor and King (1964). The erythrocyte G6PD and PK activities were detected with the fluorescent spot test (Beutler, 1966).

Results

Twenty-eight term infants were allocated to each of the 2 study groups (Table I). 10 infants were excluded from the study; 8 of them developed sepsis and 2 had erythrocyte G6PD deficiency.

TABLE I

56 Infants Selected for Blood Sugar Study

<table>
<thead>
<tr>
<th>Clinical Group</th>
<th>No. Included</th>
<th>Number of Infants Excluded</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>24</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Treated</td>
<td>22</td>
<td>4</td>
<td>28</td>
</tr>
</tbody>
</table>

*One had *Esch. coli* sepsicaemia, 5 had umbilical sepsis, and 2 had gastroenteritis.

In the control infants, an inverse correlation was found between the blood sugar and the serum bilirubin levels. Such relation was found to be statistically significant \((P < 0.05)\) on each day for the first 4 days of life (Fig.). Similar correlation was also observed in the first 5 days among the infants treated with phenobarbitone \((r = -0.175 \text{ to } -0.298)\), though such correlation did not reach statistical significance.

The effect of phenobarbitone therapy on the blood sugar and serum bilirubin comparing with the controls is shown in Tables II and III. It will be noted that the drug resulted in significant lowering of the serum bilirubin (Table II) and raising of the blood sugar levels (Table III).

TABLE II

Effect of Phenobarbitone Therapy on Serum Bilirubin Level in Newborn Infants

<table>
<thead>
<tr>
<th>Clinical Group</th>
<th>Age (dy)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Control</td>
<td>6.0 ± 2.1</td>
<td>8.4 ± 2.1</td>
<td>11.0 ± 2.7</td>
<td>12.8 ± 2.7</td>
<td>12.9 ± 3.8</td>
<td>12.3 ± 5.1</td>
</tr>
<tr>
<td>Treated</td>
<td>5.5 ± 1.7</td>
<td>7.4 ± 2.6</td>
<td>8.4 ± 3.2</td>
<td>8.6 ± 3.5</td>
<td>7.6 ± 3.4</td>
<td>6.8 ± 3.2</td>
</tr>
<tr>
<td>P value</td>
<td><0.40</td>
<td><0.20</td>
<td><0.005</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Mean serum bilirubin levels ± SD in mg/100 ml.

TABLE III

Effect of Phenobarbitone Therapy on Blood Sugar Level in Newborn Infants

<table>
<thead>
<tr>
<th>Clinical Group</th>
<th>Age (dy)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Control</td>
<td>41.4 ± 15.8</td>
<td>50.0 ± 17.1</td>
<td>49.5 ± 12.5</td>
<td>52.5 ± 12.4</td>
<td>58.3 ± 15.0</td>
<td>64.6 ± 14.2</td>
</tr>
<tr>
<td>Treated</td>
<td>49.8 ± 16.5</td>
<td>52.5 ± 18.0</td>
<td>60.4 ± 14.0</td>
<td>68.5 ± 12.1</td>
<td>61.3 ± 14.7</td>
<td>63.3 ± 12.5</td>
</tr>
<tr>
<td>P value</td>
<td><0.10</td>
<td><0.40</td>
<td><0.001</td>
<td><0.005</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*Mean blood sugar levels ± SD in mg/100 ml.
Discussion

Hypoglycaemia is common in infants with severe haemolytic disease of the newborn (Raivio and Österlund, 1969; Price, 1969). Hypertrophy of the β-cells of the islets of the pancreas (Brahler and Dallenbach-Hellweg, 1963) and an increased content of extractable insulin (Driscoll and Steinke, 1967) suggested that the hypoglycaemia is mediated through hyperinsulism. The present study showed that in infants who do not exhibit any features of haemolysis, a significant inverse correlation exists between the serum bilirubin and the blood sugar levels in the first 4 days of life (Fig.). Higher serum bilirubin levels were significantly associated with lower blood sugars. It is not known, however, whether significant hyperinsulism was present in these infants. The fact that they were selected from normal and otherwise healthy population (except for a degree of hyperbilirubinaemia) makes a postulation of hyperinsulism unlikely.

Impairment of the liver function is thought to be the cause of unconjugated hyperbilirubinaemia in the majority of jaundiced newborn infants in Hong Kong (Yeung and Field, 1969). The significant lowering of serum bilirubin levels by phenobarbitone in these infants (Yeung and Field, 1969; Yeung et al., 1971) with confirmed evidence of enhancement of liver functions (Catz and Yaffe, 1968; Stern et al., 1970; Yeung and Yu, 1971) offers support for this hypothesis. Such impairment of hepatic function could have resulted in lowering the blood sugar as well. The liver seems to be an important factor in the inverse correlation between the serum bilirubin and the blood sugar levels. Glucose administration to jaundiced infants may therefore serve a dual purpose of providing the necessary ingredient for glucuronidation of bilirubin (Billing and Lathe, 1958) and raising the blood sugar level which is depressed by the hyperbilirubinaemia.

This study also showed that the blood sugar levels were significantly raised on the third and the fourth day by phenobarbitone therapy (Table III). A return of the blood sugar to control levels was observed on cessation of treatment. The serum bilirubin levels were also significantly lowered (Table II). The inverse correlation between the serum bilirubin and the blood sugar levels persisted in the first five days in the treated infants, though the relation has not reached a statistical significant value. The rise in blood sugar in these infants was probably the result of enhancement of liver function or enzymatic induction by phenobarbitone.

The therapeutic value of phenobarbitone in the treatment of neonatal hypoglycaemia will be rather limited because it takes 2 days before a significant rise of blood sugar could be effected. In jaundiced infants, however, phenobarbitone therapy may be useful not only in preventing further rise of the bilirubin level but also in raising the blood sugar, thus preventing brain damage by the combined effect of hyperbilirubinaemia and hypoglycaemia.

I am grateful to Professor C. Elaine Field for encouragement in this work; to Professor Daphne Chan for access to study the patients at Tsan Yuk Hospital; to Dr. A. Chan for clinical assistance; and to the Director of Medical and Health Services of Hong Kong for permission to publish.

References

Blood Sugar Changes in Neonatal Hyperbilirubinaemia and Phenobarbitone Therapy

Correspondence to Dr. C. Y. Yeung, Paediatric ‘B’ Unit, Queen Elizabeth Hospital, Kowloon, Hong Kong.