Leucocyte Blood Picture in Healthy Full-term and Premature Babies During Neonatal Period

M. XANTHOU*

From the Neonatal Research Unit, Institute of Child Health, University of London, Hammersmith Hospital, London W.12.

Xanthou, M. (1970). Archives of Disease in Childhood, 45, 242. Leucocyte blood picture in healthy full-term and premature babies during neonatal period. Serial leucocyte counts were done on 15 full-term babies during the first 10 days of life and on 14 premature during the first 30 days. In addition a single count was done on the total of 53 babies around the 96th hour of life. Absolute values of each cell type are given for each postnatal age examined. The main changes in the leucocyte counts during the neonatal period were found to be as follows: (a) An increase in polymorphonuclear neutrophils after birth, reaching a peak at 12 hours, thereafter dropping to a figure which remains fairly constant from 72 hours onwards. (b) A decrease in polymorphonuclear neutrophil precursors. (c) A drop in lymphocytes reaching a minimum at 3 days of age, and thereafter rising to a steady level at about 10 days. The mean values ± 2SD for each cell type at 96 hours of life are as follows. Polymorphonuclear neutrophils: Mean = 4100/cu.mm., M + 2SD = 6900/cu.mm., M - 2SD = 1400/cu.mm. Eosinophils: Mean = 700/cu.mm., M + 2SD = 1900/cu.mm., M - 2SD = 200/cu.mm. Lymphocytes: Mean = 3900/cu.mm., M + 2SD = 7100/cu.mm., M - 2SD = 2200/cu.mm. Monocytes: Mean = 1000/cu.mm., M + 2SD = 1800/cu.mm., M - 2SD = 200/cu.mm.

Bacterial infections in the newborn still account for a considerable morbidity and mortality. This is partly because the newborn and especially the premature are prone to serious infections by organisms, especially Gram-negative, that are non-pathogenic in older people, and partly because the signs of these infections, both local (inflammatory) and general (fever, etc.) may be absent or minimal and hard to detect. Thus fatal sepsicaemia may occur with little warning.

The white cell count routinely used in the detection of bacterial infection in children and adults is also thought to be of little value in the newborn.

In reviewing papers written in English, it appears that this subject has not been studied since the late 1930s (Agress and Downey, 1936; Bauza, 1933; Forkner, 1929; Hosen, 1933; Lippman, 1924; Lucas et al., 1921; Rogatz, 1930, 1933; Sanford, 1929; Washburn, 1935; Wollstein, 1938). From 1940 onwards interest seemed to fade; a few studies were published (not in English) and these remained more or less unnoticed in the English medical literature (Hinglais and Hinglais, 1949; Kees, Schlaggetter, and Wokittel, 1958; Kumara, 1944; Lee, 1943; Muhi, 1949; Napp, 1950; Nassif, 1945; Verga, 1955; Uklonskaya, 1953; Upadhyay, 1945).

The main conclusion drawn by authors of modern textbooks comes from the studies of the 1930s, and it is that the leucocyte blood picture in the normal newborn is so variable and unpredictable that normal values cannot be established.

For instance, Wintrobe (1967), referring to Washburn (1935), states, 'during infancy, however, the leucocyte count may be very irregular and until the 26th week of life, variations from 5000-24,000 may occur in the absence of demonstrable disease'. Clement Smith (1959) says, 'an exact account (of the white cell count in the newborn) is not only unnecessary here but might be more confusing than helpful, so wide are the ranges of normal variation'. This view does an injustice to some of these studies, but nevertheless they were unsatisfactory in several respects.

Received 22 September 1969.

*Present address: 9 Maiandrou Str., Athens 612, Greece.
The practice of reporting the differential leucocyte count as a total with percentages of each cell type is scientifically correct since this is, after all, the method by which the leucocyte count is made. However, when serial changes are being described, it is much clearer to express the results in terms of absolute values for each cell type. Some of the older studies only the total counts or the differentials are given. Besides this, only small numbers of babies were studied or only a limited number of counts was made on each baby.

Some of these defects are repaired in the later papers, and Klees et al. (1958) and Straková (1964) provide evidence for a constant pattern of changes in the first few days of life.

However, no investigator has published a systematic study of the dynamics of blood leucocytes in the neonatal period, or studied sufficient numbers to establish biological ranges for each cell type over this period of life.

The purpose of the current study was, therefore, to establish the leucocyte picture of the healthy full-term and premature baby. The changes seen with illness are the subject of a separate communication.

Material and Methods

Studies were made on 69 healthy babies, capillary blood being obtained from a free-flowing heel-prick. The 69 babies included the following groups.

Group A (15 full-term babies). The first sample was collected in the first half hour following delivery, thereafter 6-hourly for the first 72 hours of life and then daily until the 7th-10th day.

Group B (14 babies, with birthweight less than 2500 g.). 13 were born before the 39th week, 1 was a small-for-dates baby of 40 weeks' gestation, whose white cell counts did not differ significantly from the others. Again the first sample was obtained within half an hour of delivery, and thereafter samples were collected every 6 hours in the first 24 hours of life and then daily until the 20th-31st day of life; in addition 6-hourly collections were made on a day chosen at random after the 10th day of life in order to look for diurnal variations.

Group C (40 full-term babies). Because the number of healthy babies was too small to show if the counts of each leucocyte cell type were normally distributed, the blood picture of an additional 40 full-term babies was studied around the 96th hour of life; the time at which the neutrophil count has stabilized.

Total white cell counts were made on a Coulter electronic counter which has an instrumental error of up to 2%. The total error of the method, however, including heel-prick collection, pipetting, and diluting has been estimated as up to 8%.

The films were stained by the combined May-Grunwald + Giemsa method and cover slips were used. For the differential examination 2 sets of 100 cells were counted with a repeat examination of a further 200 if the difference between the original counts in respect of any cell-type was greater than 10%.

Results

There is little to be learnt from the total white cell count in any subject and especially in the newborn baby; therefore the results reported below are in terms of individual cell types.

(A) Neutrophils

Polymorphonuclear neutrophils. At birth the polymorphonuclear neutrophils were the predominant cells found in the blood. Each baby showed a marked increase in the absolute value during the first 24 hours of life, reaching a peak at 12 hours.

In full-term babies the mean value was 8000/cu.mm. at birth, rose rapidly to 13,000/cu.mm. at 12 hours of age, and dropped almost as rapidly to 4000/cu.mm. by 72 hours of age, thereafter remaining stable over the period studied (Fig. 1).

In prematures the mean value at birth was 5000/cu.mm., at 12 hours 8000/cu.mm., and at 72 hours 4000/cu.mm. Thereafter there was a gradual fall in the mean count, reaching 2500/cu.mm. by the 28th day of life (Fig. 2).

It is worth noting that both in full-term and in premature babies after the first 72 hours of life the absolute values of polymorphonuclears never exceeded 7000/cu.mm. and remained remarkably steady in each baby, so that, in general, daily differences in polymorphonuclear neutrophil counts
The 96-hour values of Group A were added to Group C for analysis of distribution of neutrophil counts at this age.

As seen in Fig. 3, the distribution of neutrophil counts appears to be slightly skewed to the right. However, the χ^2 test shows that it is compatible with an arithmetic normal distribution.

The mean of the absolute values at 96 hours of age was $4100/\text{cu.mm.}$ and the standard deviation $1400/\text{cu.mm.};$ thus the mean $+2\text{SD}$ is approximately $6900/\text{cu.mm.}$ and $-2\text{SD} 1300/\text{cu.mm.}$

Of the observed values all but four fell within the range 2500 to $6500/\text{cu.mm.};$ the lowest was $1400/\text{cu.mm.}$ and the highest was $10,200/\text{cu.mm.}$. However, this latter count, the only one to exceed $7000/\text{cu.mm.},$ was from a baby who had suffered intrapartum asphyxia and meconium aspiration and who, though well at 96 hours, should not perhaps have been regarded as normal. Since this baby was not excluded in advance, his white cell count has been included in the study.

Band forms. It was found that, in the first 2–3 days of postnatal life, a varying proportion of neutrophils, sometimes half of them, presented as band forms (Fig. 4), but their number decreased thereafter so that by the end of the first week they usually

TABLE II

Absolute Values of Polymorphonuclear Neutrophils 6-hourly on Random Day after 10th Day of Life

<table>
<thead>
<tr>
<th>Babies</th>
<th>Age (dy.)</th>
<th>Hours</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
<td>2600</td>
<td>3000</td>
<td>2800</td>
<td>2600</td>
<td>2900</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
<td>5200</td>
<td>5300</td>
<td>5200</td>
<td>4800</td>
<td>4600</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td></td>
<td>2900</td>
<td>3000</td>
<td>2900</td>
<td>2700</td>
<td>2900</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
<td>6200</td>
<td>6000</td>
<td>5800</td>
<td>5600</td>
<td>5700</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
<td>2000</td>
<td>2100</td>
<td>2200</td>
<td>2100</td>
<td>2300</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td></td>
<td>6600</td>
<td>6700</td>
<td>6600</td>
<td>6400</td>
<td>6300</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td></td>
<td>1100</td>
<td>1000</td>
<td>1100</td>
<td>1100</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td></td>
<td>2100</td>
<td>2100</td>
<td>2200</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td></td>
<td>3200</td>
<td>3300</td>
<td>3100</td>
<td>3400</td>
<td>3300</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td></td>
<td>3900</td>
<td>3800</td>
<td>3600</td>
<td>3700</td>
<td>3700</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td></td>
<td>3700</td>
<td>3600</td>
<td>3700</td>
<td>3500</td>
<td>3000</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td></td>
<td>3900</td>
<td>4100</td>
<td>3900</td>
<td>4100</td>
<td>4000</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td></td>
<td>2800</td>
<td>3000</td>
<td>2900</td>
<td>2900</td>
<td>2700</td>
</tr>
<tr>
<td>14</td>
<td>26</td>
<td></td>
<td>2900</td>
<td>2800</td>
<td>2800</td>
<td>2600</td>
<td>2700</td>
</tr>
</tbody>
</table>

Fig. 3.—Histogram of neutrophils on 53 healthy full-term babies.
Leucocyte Blood Picture in Healthy Full-term and Premature Babies

Neutrophils on 29 Full-term and Premature Babies from 4th to 30th Day of Life

<table>
<thead>
<tr>
<th>Neutrophil Count Range</th>
<th>Full-term Babies</th>
<th>Premature Babies</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-18</td>
<td>18-19</td>
<td>19-20</td>
</tr>
<tr>
<td>-100</td>
<td>-190</td>
<td>-40</td>
</tr>
<tr>
<td>194</td>
<td>397</td>
<td>187</td>
</tr>
<tr>
<td>20-21</td>
<td>+80</td>
<td>-60</td>
</tr>
<tr>
<td>21-22</td>
<td>216</td>
<td>257</td>
</tr>
<tr>
<td>22-23</td>
<td>283</td>
<td>339</td>
</tr>
<tr>
<td>23-24</td>
<td>261</td>
<td>261</td>
</tr>
<tr>
<td>24-25</td>
<td>-33</td>
<td>-11</td>
</tr>
<tr>
<td>25-26</td>
<td>250</td>
<td>343</td>
</tr>
<tr>
<td>26-27</td>
<td>+57</td>
<td>-83</td>
</tr>
<tr>
<td>27-28</td>
<td>127</td>
<td>204</td>
</tr>
<tr>
<td>28-29</td>
<td>204</td>
<td>204</td>
</tr>
<tr>
<td>29-30</td>
<td>183</td>
<td>183</td>
</tr>
<tr>
<td>30-31</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

represented a small percentage of the total neutrophil count.

Metamyelocytes. Metamyelocytes in full-term babies were found in greater numbers during the first 3 days of life and practically disappeared by the end of the first week. As shown in Fig. 5, counts of up to 2000/cu.mm. were found to be normal during the first 72 hours of life.

Premature babies gave approximately the same picture as full-term babies but with somewhat higher counts during the first 72 hours of life, the upper range approaching 3000/cu.mm. occasionally. In premature, as well as full-term babies, metamyelocytes had almost entirely disappeared towards the end of the first week of life (Fig. 6). After the first 72 hours of age a metamyelocyte count of over 500/cu.mm. was very unusual both in premature and full-term babies.

Myelocytes. In healthy full-term babies myelocytes were found within a range from 100 to 750/cu.mm. during the first 3 days of life, while an occasional one was seen up to the end of the first week of life.

Premature babies presented similar findings but with a range of up to 1000/cu.mm. during the first 3 days of life, and in the prematurely born an occasional myelocyte was found up to the 30th day of life.

Promyelocytes. An occasional promyelocyte was sometimes seen in the blood of a healthy newborn baby. This was more frequently noticed during the first days of life and in premature rather than full-term babies.

Blast cells. An occasional blast cell was also encountered in healthy newborns, and as with promyelocytes, more frequently during the first days of life and in premature rather than full-term babies.

(B) Eosinophils. The numbers of eosinophils during the first week of life were variable, ranging...
from 100–2500/cu.mm. both in full-term and premature babies (Fig. 7 and Fig. 8).

The distribution of the eosinophils of 53 healthy full-term babies at the 96th hour of life was logarithmically normal (Fig. 9).

Logarithmic transformation gives the following figures: Mean = 700/cu.mm., $M + 2SD = 1900/cu.mm., M - 2SD = 200/cu.mm$. The upper figure observed at that time was 1900/cu.mm. and the lowest 200/cu.mm. In the group of premature babies a steady rise was found after the first week of life, the mean being under 600/cu.mm. during the first week, 800/cu.mm. at the end of the 2nd week, and just over 1000/cu.mm. by the end of the first month (Fig. 8).

(C) Basophils. Basophils were encountered in very small numbers both in premature and full-term babies. Their numbers tended to follow the rise or fall of the eosinophils.

(D) Lymphocytes. The absolute values of lymphocytes tended to fall during the first 3 days of life and then rise up to the 10th day both in premature and full-term babies (Fig. 10 and 11).

The distribution of the lymphocytes of 53 healthy full-term babies at the 96th hour of life was logarithmically normal (Fig. 12).

Logarithmic transformation gives the following figures: Mean = 3900/cu.mm. $M + 2SD = 7100/cu.mm., M - 2SD = 2200/cu.mm$. The highest number observed at that time was 9100/cu.mm. and the lowest 2000/cu.mm.

In premature babies the absolute numbers of lymphocytes remained steady after the first 10 days of life.

(E) Monocytes. The absolute values of monocytes showed a rise at 12 hours of life, with a subsequent gradual fall until the third day of life, both in premature and full-term babies. After this there was a further rise up to the 7th day of life (Fig. 13 and 14).

The distribution of the monocytes of 53 healthy
full-term babies at the 96th hour of life was normal using arithmetic values (Fig. 15).

The mean value was 1000/cu.mm. and the SD 400/cu.mm. The observed upper figure at that time was 2100/cu.mm. and the lowest 300/cu.mm.

In prematures the mean and ranges were quite steadily maintained after the 10th day of life up to the end of the first month.

Discussion

There are obvious and significant trends in the peripheral blood of the numbers of the various white cell types in the first few days of postnatal life.

In theory, the number can be increased by: (1) increased production in the marrow; (2) displacement from storage areas, especially the marginal layer of vessels; (3) increased life time in the blood; (4) decreased passage into tissues; and (5) haemoconcentration.

The reverse of these five situations will decrease the number of white cells in the peripheral blood.

Since the main purpose of this study was to establish normal values, the dynamics of white cell fluctuation will not be discussed in detail. However, certain striking features call for comment.

The most striking change is the enormous rise in neutrophils, which takes place on the first postnatal day (Bayer, 1881; Agress and Downey, 1936; Lippman, 1924; Lucas et al., 1921). This rise fully accounts for the increase in total white cells which has so often been reported.

Since there is a simultaneous decrease in the numbers of lymphocytes and no commensurate
increase in other white cells, it seems most improbable that haemoconcentration, so often invoked to explain this phenomenon (Oski and Naiman, 1966; Schiff, 1892; Wollstein, 1938), is the true explanation.

Since there is only a small rise in neutrophil precursors, it also seems improbable that increased marrow production is the cause of the rise.

The most plausible explanation seems to be the displacement of neutrophils from the marginal layer of vessels. This is known to happen after violent exercise in adults (Boggs, 1967), and in the newborn may well reflect his personal labours in childbirth which is by no means a passive process.

Another striking feature as regards neutrophils is that the absolute values of polymorphonuclears both in full-term and premature babies after the first 72 hours of life never exceeded 7000/cu.mm. or fell below 1000/cu.mm., and remained remarkably steady in each individual baby, so that daily differences in counts were found to be within the range of experimental error. As regards the absence of diurnal changes in polymorphonuclear neutrophil counts in the newborn, this is in keeping with other observations on the absence of diurnal rhythms in the newborn.

The other obvious changes in the neonatal period, viz. a drop in the numbers of neutrophil precursors (myelocytes, metamyelocytes) (Agress and Downey, 1936; Forkner, 1929; Kato, 1935; Lippman, 1924; Sanford, 1929; Washburn, 1935; Wollstein, 1938), the marked drop in lymphocytes in the second and third day (Forkner, 1929; Kato, 1935; Lippman, 1924; Wollstein, 1938), and the rise in eosinophils towards the end of the first month (Medoff and Barbero, 1950; Burrell, 1953), are harder to explain.

As regards the latter trend Medoff and Barbero (1950) have suggested that this could be due to recovery from the hyperadrenal or shock state of birth to the subsequent neonatal hypoadrenalism.

Also noteworthy is the high level of monocytes in the neonatal period, usually exceeding that found in adults (Forkner, 1929; Kato, 1935; Kees et al, 1958; Uklonskaya, 1953).

The most important finding from this study has been the demonstration that quantitative and qualitative changes of white cells in individual healthy full-term and premature newborn babies follow a remarkably constant pattern during the neonatal period.

I wish to thank Professor J. P. M. Tizard for suggesting this study and for his help in the preparation of this paper, and Professor J. V. Dacie, F.R.S., and Dr. D. L. Brown for their advice and instruction. I acknowledge with thanks facilities provided by the Sir William Coxon Trust Fund.

REFERENCES

The following articles will appear in future issues of this journal:

Venous Pressure in Congestive Heart Failure in Infancy. By R. H. Burnell.

Islet-cell Tumour Causing Hypoglycaemia in a Newborn Infant. By D. B. Grant and P. R. H. Barbor.

SUSPENDING AGENTS IN MEDICAMENTS AS POSSIBLE SOURCES OF GALACTOSE TO THE GALACTOSAEMIC CHILD. By D. E. Bott, P. J. Hopley, and R. H. Leach.

Cryptococcal Meningitis. By R. McDonald, E. N. Greenberg, and R. Kramer.

Retinal and Conjunctival Haemorrhage in the Newborn. By J. D. Baum and C. J. Bulpitt.

Retinal Vasocclusion in Premature Infants with Increased Arterial Oxygen Tensions. By J. D. Baum and C. J. Bulpitt.

Cardiovascular Responses to Postural Changes in the Neonate. By C. G. Picton-Warlow.

