Breast Milk Jaundice: Effect of 3α 20β-pregnanediol on Bilirubin Conjugation by Human Liver

B. P. F. ADLARD and G. H. LATHE
From the Department of Chemical Pathology, University of Leeds

Adlard, B. P. F., and Lathe, G. H. (1970). Archives of Disease in Childhood, 45, 186. Breast milk jaundice: effect of 3α,20β-pregnanediol on bilirubin conjugation by human liver. The effect of 3α,20β-pregnanediol and other steroids on bilirubin conjugation was examined using liver tissue from human and four other species. Neither 3α,20β-pregnanediol nor 3α,20α-pregnanediol inhibited conjugation by human liver slices or by solubilized human liver microsomes. 3α,20β-pregnanediol is unlikely to be the inhibitor causing breast milk jaundice.

Oestriol inhibited conjugation by human liver slices. A comparison of species indicated that the response of the human liver slice system to steroids resembles that of the rabbit and guinea-pig rather than the rat or mouse.

Newman and Gross (1963) reported the association of prolonged newborn jaundice with breast feeding. In those infants who were transferred to cow's milk a rapid fall in plasma bilirubin occurred. Arias et al. (1964) confirmed the clinical observations, and showed that the mother's milk inhibited bilirubin conjugation by liver slices and homogenates. They isolated 3α,20β-pregnanediol from the milk, and showed that it competitively inhibited glucuronyl transferase (acceptor o-aminophenol) of guinea-pig liver.

We have now examined the effect of 3α,20β-pregnanediol on slices of human liver and solubilized human glucuronyl transferase, using bilirubin as the acceptor. We also tested other steroids that might be inhibitory.

Materials and Methods
The liver samples were from 2 adult men. One had a cerebral haemorrhage and the other glioblastoma multiforme. The specimens were obtained at the time kidneys were removed for transplantation. Previously the patients had been maintained by artificial respiration. The time during which the organs were subject to warm anoxia was between 20 and 30 minutes. The period of anoxia was probably not important, as control experiments with rat liver slices showed that comparable anoxia did not remove the inhibition by pregnanolone.

For inhibitory studies with animals males were used. Rats (Wistar strain) weighed 200-300 g., rabbits (New Zealand White strain) approximately 2 kg., guinea-pigs 600-1000 g., and mice 25-30 g.

Bilirubin conjugation by liver slices was determined from the amount of direct-reacting bilirubin in the incubation medium by the method of Lathe and Walker (1958a), with two modifications: a 5-minute 'direct' reaction time was used, instead of 30 minutes, and 0.1% (w/v) sodium azide, instead of ascorbic acid solution (B. H. Billing, 1969, personal communication), was used.

Unconjugated steroids were obtained from Koch-Light Laboratories Ltd., or the Sigma Chemical Co. Ltd. Sodium pregnanediol glucuronide was provided from the MRC Steroid Reference Collection by Professor W. Klyne. Bilirubin was obtained from British Drug Houses Ltd.

Solubilized glucuronyl transferase was prepared according to the method of Halac and Reff (1967), with omission of the EDTA step, and tested in the presence of 0.25 mM UDPGA (Lathe and Walker, 1958a).

Results
The rates of bilirubin conjugation by human liver slices and solubilized glucuronyl transferase are given in Table I. The effects of adding a number of steroids are given. The results are compared with those obtained using liver slices from four other species in Table II.

Discussion
Our results (Tables I and II) confirm the findings of Holton and Lathe (1963) that neither 3α,20α-pregnanediol nor its glucuronide inhibit bilirubin...
TABLE I

<table>
<thead>
<tr>
<th>Addition</th>
<th>Rate of Bilirubin Conjugation (μg./g. liver per hr.)</th>
<th>Sample 1 Slices</th>
<th>Sample 2 Slices</th>
<th>Solubilized Microsomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>25.5 ± 3.4</td>
<td>21.4 ± 2.7</td>
<td>95 ± 10</td>
</tr>
<tr>
<td>3α,20α-pregnadiol</td>
<td></td>
<td>28.2 ± 0.8</td>
<td>23.7 ± 1.7</td>
<td>99</td>
</tr>
<tr>
<td>3α,20β-pregnadiol</td>
<td></td>
<td>23.3 ± 3.3</td>
<td>22.4 ± 2.9</td>
<td>99</td>
</tr>
<tr>
<td>Oestriol</td>
<td></td>
<td>12.8 ± 1.7†</td>
<td>12.2 ± 2.0†</td>
<td>91</td>
</tr>
<tr>
<td>Dehydroepiandrosterone</td>
<td></td>
<td>28.8 ± 0.9</td>
<td>21.6 ± 4.2</td>
<td>91</td>
</tr>
</tbody>
</table>

Each value (based on quadruplicate determinations) is the mean of the inhibitions determined on the number of individual animals indicated in parentheses. Different animals were used when oestriol and pregnanolone were tested at different concentrations. The dagger indicates a result calculated from Bevan, Holton, and Lathe (1965).

TABLE II

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Concentration (M)</th>
<th>Rat</th>
<th>Mouse</th>
<th>Rabbit</th>
<th>Guinea-pig</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5·0 × 10⁻⁵</td>
<td>8 (1)</td>
<td>—</td>
<td>31 (1)</td>
<td>—</td>
<td>30 (1)</td>
</tr>
<tr>
<td></td>
<td>2·5 × 10⁻⁴</td>
<td>21 (1)</td>
<td>50 (6)</td>
<td>51 (2)</td>
<td>49 (1)</td>
<td>46 (2)</td>
</tr>
<tr>
<td></td>
<td>5·0 × 10⁻⁴</td>
<td>38 (1)</td>
<td>—</td>
<td>51 (2)</td>
<td>41 (1)</td>
<td>—</td>
</tr>
<tr>
<td>Oestriol</td>
<td>2·5 × 10⁻⁶</td>
<td>50 (6)</td>
<td>—</td>
<td>4 (1)</td>
<td>6 (1)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2·5 × 10⁻⁶</td>
<td>50 (6)</td>
<td>—</td>
<td>6 (6)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5·0 × 10⁻⁴</td>
<td>—</td>
<td>34 (2)</td>
<td>—</td>
<td>24 (1)</td>
<td>—</td>
</tr>
<tr>
<td>Pregnanolone</td>
<td>1·0 × 10⁻⁶</td>
<td>41†</td>
<td>31 (6)</td>
<td>2 (2)</td>
<td>—7 (2)</td>
<td>—2 (2)</td>
</tr>
</tbody>
</table>

Each value (based on quadruplicate determinations) is the mean of the inhibitions determined on the number of individual animals indicated in parentheses. Different animals were used when oestriol and pregnanolone were tested at different concentrations. The dagger indicates a result calculated from Bevan, Holton, and Lathe (1965).
dihol produces a rise in serum bilirubin in newborn infants. Arias and Gartner (1964) noted this in 2 of 4 infants who were given 0.33 mg./kg. per day. 2 larger infants did not respond.

Ramos et al. (1966) gave 1 mg./day of the 20β-diol to 16 newborn infants, and 1 mg./day of the 20α-diol to 4 infants, without effect. Lauritzen and Lehmann (1967) administered 3α,20α-pregnadienol (10 mg./day, intramuscularly) to 2 5-day-old infants and reported a subsequent increase in the serum bilirubin concentration. Oestriol and cortisone administration had the same effect.

(5) 3α,20β-pregnadienol inhibits bilirubin glucuronide formation by liver preparations. Both 20α and 20β-diols were tested by Lathe and Walker (1958b) at a concentration of about 10–5 M. They noted marked species differences, exemplified by strong inhibition of rat liver slices but not of slices of Macaca mulatta liver. Holton and Lathe (1963) showed that human liver slices did not respond to 3α,20β-pregnadienol (or its glucuronide).

Though Arias et al. (1964) tested the effect of icterogenic milk on human liver slices with bilirubin as a substrate, 3α,20β-pregnadienol was examined with guinea-pig microsomes using o-aminophenol as a glucuronyl acceptor. Our studies have now shown that bilirubin conjugation by slices from 2 human livers (and soluble enzyme from 1) was not inhibited by 3α,20β-pregnadienol, even at high concentrations (Table 1). Moreover, the amounts of the 20β-diol which were said to occur in icterogenic milk would be too little to inhibit the most sensitive test system—rat liver slices using bilirubin. Arias et al. (1964) estimated that about 1 mg. of the 20β-diol was secreted in the milk per day. Assuming that 500 ml. milk were produced, and taking account of the 12-fold dilution in Arias's in vitro system, the final steroid concentration would be less than 10–6 M. This is insufficient to produce 51–66% inhibition of rat liver slices by icterogenic milk which Arias et al. (1964) reported.

In summary, though there is general agreement about the first 2 observations, the latter 3 are not consistently supported. Part of the conflicting evidence regarding the latter 3 observations might be explained if breast milk jaundice were an expression of inherited biochemical defect. This would require the additional assumption that the biochemical defect, shown in the mothers by the secretion of 20β-diol in the milk, was expressed in their infants with the same trait by sensitivity to, or inability to metabolize, this steroid. If true, this could only be detected by tests on the liver of the affected infants, which would explain the negative results of administering 20β-diol in vivo (Ramos et al., 1966) and in vitro (Table 1). However, this hypothesis would require that the two infants (Arias and Gartner, 1964) who responded to 20β-diol were, by chance, individuals with this trait.

The infrequency of breast milk jaundice (even allowing for the unpopularity of breast feeding) makes this possibility remote. It seems much more probable that the in vitro inhibitor of icterogenic milk is not 3α,20β-pregnadienol, and remains to be identified by further work.

If a further search is to be made for inhibitors in breast milk it is important that this should be done with a test system which responds similarly to human liver. Rat liver is very sensitive to pregnenadienol glucuronide (Bevan et al., 1965) and to pregnanolone (Adlard, Lester, and Lathe, 1969), and to other 5β-pregnane and androstane derivatives, which may affect primarily secretion of conjugated bilirubin rather than its conjugation. This is indicated by the accumulation of conjugated pigments in the rat liver slice. In contrast, pregnanolone produced a relatively small inhibition of rabbit, guinea-pig, and human liver and then only at 10–20 times the concentration causing 50% inhibition in the rat. These three species did not respond to pregnenadienol glucuronide. All these species were inhibited by oestriol. Our studies suggest that the rabbit or guinea-pig would be more appropriate for a study of icterogenic milk than the rat or mouse.

We thank the Medical Research Council for support.

References

Breast Milk Jaundice

Inhibition of bilirubin conjugation in rat liver slices by human pregnancy and neonatal serum and steroids. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences, 43, 257.

Addendum

Further reports of clinical observations have been reviewed by Schneegans et al. (1969). Krauer-Mayer, Keller, and Hottinger (1968) reported 5 cases. The icterogenic milk contained 20–42 µg. 20β-pregnanediol/100 ml. milk. Four control samples had none. Severi et al. (1969) examined the breast milk being taken by 7 patients with prolonged neonatal hyperbilirubinaemia. In 5, 20–45 µg. 20β-pregnanediol/100 ml. were found (F. Severi, 1969, personal communication). These concentrations are less than one-fifth of those reported by Arias et al. (1964).

REFERENCES

Correspondence to Professor G. H. Lathe, Department of Chemical Pathology, School of Medicine, Leeds LS2 9NL.