THE COMPARATIVE EFFICIENCY OF VARIOUS TECHNIQUES FOR THE DIAGNOSIS OF THREADWORM INFECTION

BY

J. M. WATSON and R. MAC KEITH

From the American University of Beirut and the Department of Child Health, Guy’s Hospital, London

(RECEIVED FOR PUBLICATION JUNE 22, 1952)

When infection by threadworms is suspected it is essential before starting treatment to confirm the diagnosis by recovering ova of the parasite from the perianal skin. This is the more important since, as Lane (1944) remarks, 'no drug is yet known that is deadly to the worm yet less risky to man than is the infection', and the clinical picture is variable and unreliable as a basis for diagnosis.

Much work has been published during the last two decades on the diagnosis of threadworm infection, and the literature contains many accounts of methods for the recovery of the ova from the patient but few of the comparative efficiency of these techniques. Indeed, heretofore, no exact methods have been devised for the accurate comparison of one technique with another, although within recent years various workers have compared the value of perianal swabbing and scraping with that of faecal examinations or have assessed the relative merits of such newer devices as the NIH (National Institute of Health of the U.S. Public Health Institute) swab, the adhesive cellophane swab and the glass pestle by repetitive examination of the same group of infested individuals. Multiplicity of techniques has given rise to confusion. We therefore decided to investigate, by controlled experiments, the relative efficiency of some recent and improved diagnostic methods, and by clinical practice to assess their relative convenience and speed. The experimental work has been carried out in the Wellcome Laboratories of Tropical Medicine and the clinical work in the wards of The Hospital for Sick Children, Great Ormond Street, London.

Two new types of anal swab were developed which were exhibited before the Royal Society of Tropical Medicine (Watson and Mac Keith, 1947a) and the Royal Society of Medicine (Watson and Mac Keith, 1947b), and are described below.

Historical Survey

Although the extra-corporeal oviposition of Enterobius vermicularis was known before his day, Davaine (1860) was the first to suggest searching the perianal region for the worms and their ova rather than examining the faeces, and Vix (1860) was the first to recommend the use of a probe, curette, spatula or ivory scalpel handle for this purpose. Heller (1876) proposed the examination of any piece of paper that might have been used after defaecation, a method which was later improved and developed into the T.P. (toilet paper) swab (Watson and Mac Keith, 1947).

Various types of cotton, chamois and rayon swabs, and glass, metal, wooden and celluloid scrapers were subsequently introduced but they showed little advance over the original method of Vix.

The first major improvement was made in 1933 when Hellsten suggested wiping the perianal region with a vaselined cloth and shaking up the material obtained with a mixture of water and ether which could then be centrifuged and the sediment examined for ova. Although efficient in the recovery of threadworm eggs this method was too cumbersome and time-consuming to be generally adopted. A similar technique was introduced by Kevorkova (1946) who used a moist cotton-wool swab to wipe the anal region and then placed it in a test tube partly filled with water which was vigorously shaken before removal of the swab and centrifugation. Still more recently Markey (1950) proposed an improvement on Kevorkova’s method by coating the cotton-wool swab with a mixture of vaseline and wax and substituting xylol for water in the tube.

In 1937 Hall evaluated the comparative efficiency of many of the types of swabs and scrapers previously suggested and showed that they were all
unreliable. He introduced the NIH cellophane swab which rapidly gained universal approval and adoption. Jones (1938) clarified details of its use. Reardon (1938) described the artefacts in cellophane which might simulate threadworm eggs. Folan (1939) dealt with the preparation and cleaning of the swab. Boycott (1949) introduced slight modifications in the design and method of use.

Another step forward was taken in 1941 when the use of adhesive cellophane tape instead of ordinary cellophane was independently suggested by Graham and in 1942 by Jacobs. This method has been even more widely adopted than the NIH swab and modifications of it have been suggested by Von Hove (1944), Brooke, Donaldson and Mitchell (1949) and Beaver (1949). Ebert (1949) proposed the attachment of the adhesive cellophane strip to the anal cleft covering the anus overnight so that the worms would actually oviposit on it. Hitchcock (1949) studied the occurrence of egg-like artefacts in adhesive cellophane tape and concluded that they were rare.

In 1943 Schüßner and Swellengrebel published the first description of a device entirely new in principle and design, arising out of the observation that the ova of *E. vermicularis* are always laid in clumps which might be missed by a swab or scraper. This instrument, consisting of a small glass pestle with a rough-ground end which was wetted before application, was designed to break up these clumps into a suspension so ensuring that none should be missed. The authors claimed that in clinical trials it was superior to the NIH swab.

In 1945 Petersen and Fahey proposed to simplify the process of recovering ova from the patient by pressing an ordinary microscope slide on to the perianal skin and examining it directly under the microscope.

Finally, in 1946 Watson and Mac Keith introduced the use of a moistened camel-hair brush for the collection of eggs from the perianal region (Watson and Mac Keith, 1947).

Since that date modifications of existing methods but no substantially new techniques have been introduced. One of the most useful innovations was the differentiation of living from dead ova by staining with fluorochrome acridine orange (Beckers, 1949).

Sawitz (1940), Sawitz, Odom and Lincicome (1939) and McMullen (1949) have dealt with the question of the number of negative swabs necessary to prove that a patient is not infested with threadworms. Their findings are in no way invalidated by ours.

Comparison of the relative efficiency of diagnostic methods has been confined to empirical conclusions or to the consecutive use of two devices on the same group of patients. In this way Sawitz et al. (1939), Sawitz (1940) and Miller and Einhorn (1944) have compared the NIH swab with faecal concentration methods; Kuittinen-Ekbaum (1942), Mazzotti and Osorio (1942 and 1945), Meneses Rubiánez and Avendaño Escalante (1949) and Jeffrey (1950) have compared the NIH swab with the glass pestle and the adhesive cellophane swab. The general consensus of opinion of these authors was that the NIH swab was greatly superior to faecal concentration methods; that the glass pestle was superior to the NIH swab; and that the adhesive cellophane swab was superior to the glass pestle.

Material and Methods

The purpose of the experiments was to determine the percentage of ova which would be picked up from the human skin and revealed by microscopic examination in the case of each of the different devices under investigation, and so to obtain figures which could be used in comparing their relative efficiency.

Since infection of experimental animals with *Enterobius vermicularis* is not possible, and since human infection could not be controlled, the ova of the rabbit threadworm, *Passalurus ambiguus*, were employed throughout the experiments. This made it easier to obtain uniform conditions for repeated series of observations than would have been the case with human threadworms.

The ova of *P. ambiguus*, although slightly larger than those of the human threadworm, are similar in shape and have the same inner lipoidal, middle chitinous and outer albuminaceous layers of the shell, and it was therefore concluded that any results obtained with them would be valid for the eggs of *E. vermicularis*.

Between the hard, dry pellets of faeces in the rectum of freshly killed rabbits were often found gravid female worms on the way to the exterior to discharge their ova. At first only these specimens were used in the tests, but unfortunately when exposed to air by the opening of the rectum many of them discharged their eggs before they could be transferred to the experimental surface and were thus useless. Later, however, it was found that if, in a heavily infected rabbit, the caecal contents were removed into a shallow basin and placed in an incubator at blood-heat, most of the worms came to the surface of the mass within a few minutes, and large females could then be picked out and allowed to oviposit on the selected area of skin. This was more satisfactory than the use of specimens from the rectum since a greater length of time elapsed between picking up the worms in the forceps and the act of oviposition.

The efficiency of the diagnostic techniques was investigated using not only dry ova but also those which had been wetted, in case the adhesiveness of the outer layer of the eggshell was reduced by wetting.

In one group of experiments gravid females were allowed to oviposit, one at a time, on the palm of the
hand. Any worm which did not oviposit voluntarily was discarded, since in immature specimens the albumino-
aceous outer layer of the eggshell might not have the same degree of stickiness. The diagnostic device was then applied to the area of egg-deposition, normally a
circle of about one centimetre diameter, after an interval of two or three minutes to allow drying to take place.

In a second group of experiments a large number of gravid female worms were transferred to a small volume
(about 5 ml.) of physiological saline and cut into very
fine pieces so as to liberate the ova from the body. A suspension of eggs was thus obtained from which, after
thorough shaking to ensure even distribution of the ova through the liquid, several drops were removed with a
fine pipette and placed separately on microscope slides. By using the same pipette held at the same angle on each
occasion, drops of uniform size were obtained. At the
same time, using precisely the same technique, a series of
drops was placed on marked areas along the skin of the
underside of the forearm and allowed to dry. The diagnostic devices were then applied to the areas covered
by the dried drops. Counts were then made of the
number of ova in the control drops on the slides and the
percentage of ova recovered by each device on each
application could then be calculated.

Diagnostic Devices

The patients were children between the ages of 9
months and 2 years, together with a small number of
adults. The purpose of the clinical investigations was to
compare the relative facility with which each device could
be employed in practice, the average time occupied in its
use, subsequent manipulation and microscopic examination,
and the degree of discomfort to the patient.

The devices employed were the NIH swab, the TP
swab, the glass pestle, the adhesive cellophane or Graham
swab, the direct slide and the brush. We have already
described them in an earlier paper (Watson and
Mac Keith, 1947).

A number of different clearing agents were tested
subsequently in connexion with the TP swab, and some
account of this work may not be out of place. The best
results were obtained by the use of oil of wintergreen.
A dilute solution of light green in clove oil stained the
background green while the unstained eggs appeared
yellow. Clove oil alone also produced excellent con-
trast, the eggs appearing yellow against a white back-
ground. Beechwood cresote was almost equally good
when viewed with minimal light. Lactophenol gave a
good result only with strong illumination. Glycerin at
first trapped numerous air-bubbles in the paper but after
standing overnight gave better contrast than any other
reagent. Monning’s medium (gum arabic 60 parts,
glycerin 40 parts, chloral hydrate 100 parts, thymol 1 part)
was satisfactory when tinted with eosin, the ova at
first remaining unstained and showing up well against
the coloured paper and later becoming more deeply
stained than the paper. Cedar-wood oil, xylol, benzol,
liquid paraffin, chloroform and acetone were all unsatis-
factory as both eggs and paper became too transparent
and there was insufficient contrast. Caustic potash and
soda solutions were also useless as they failed to render
the paper transparent. The preparations lasted for
several days without the necessity of sealing the edges
of the coverslip but showed a decreasing degree of
contrast between paper and eggs as the latter gradually
cleared. Numerous different varieties of toilet paper
were investigated but the only unsuitable one was the
crinkled type, which would not lie flat on the slide.
Tissue paper was found to clear exceptionally well and
would have been superior to toilet paper but for the fact
that it tore very easily and required more careful handling.

Experimental Results

Experiments with Dry Eggs. The results of the
first series of experiments in which ovipositing
female threadworms were used and the eggs allowed
to dry before carrying out the test are set out in
Table 1 which gives the actual number of ova
recovered in each operation.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers of Ova Recovered by Each Device</td>
</tr>
<tr>
<td>Test</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

Mean: 134 176 203 73 103 266

Since the NIH and TP swabs and the brushes
remained in their tubes for several days before being
examined, some of the ova might have become
detached and be lying loose at the bottom of the
tubes. Each tube was therefore washed out with
water, the washing centrifuged, and the sediment
examined. In only one instance (an NIH swab
tube) were any ova discovered and in this case only
a single egg was found. Evidently then the
adhesiveness of the egg is sufficient to ensure its
adherence to the collecting surface for several days
even when, as in the case of the NIH and TP swabs
and the brush, that surface is not in itself sticky. Thus delay in examination of the swabs does not appreciably lessen the likelihood of finding ova if any were originally present. The other three methods depended upon the adherence of the eggs to the surface of slides which were kept flat and did not therefore suffer from the same disadvantage.

Many of the eggs picked up by the brush are not delivered to the cavity slide for examination at the first dipping. Each brush was dipped consecutively into caustic soda solution three times. The number recovered at the second and subsequent dippings is always less than that recovered the first time (see Table 2), and no doubt depends on the lapse of time between oviposition and application of the brush, the temperature of the caustic soda solution and the degree of mechanical agitation employed. For the purposes of this study only figures obtained from the first dipping of each brush are taken into account.

In order that a valid comparison between the figures established for the six different methods might be made it was necessary to relate them to the number of ova produced by the adult female worm. Passalurus ambiguus, although similar in dimensions to Enterobius vermicularis, has larger ova and a smaller number are therefore present in the gravid female. Search of the literature revealed no estimate of this number and it was therefore assessed experimentally. The technique of Reardon (1938) was adopted, each worm being cut into four pieces in a drop of glycerin and water on a slide and the eggs extracted by teasing with mounted needles. Adult females were obtained from the rectum of the lower part of the colon of infected rabbits and killed by immersion in hot alcohol-glycerin. Counts were made on 25 specimens, the results of which are given in Table 3.

However, from the point of view of relating the number of eggs picked up from a single ovipositing female by the various diagnostic devices to the number of eggs which might be expected to be found in such a specimen, it is important that the efficiency of each method should not be overestimated. The arithmetic mean, or any other measure of central tendency, may give such an overestimate in any particular instance. It was therefore decided to use, for purposes of comparison a figure of 1,000 as being the maximum number of ova in a gravid female (to the nearest round number) and to express the pick-up figures for each type of diagnostic device as percentages of this maximum possible egg-number. The final assessment figures are presented in Table 4.

In judging the reliability of six diagnostic devices three different indices derived from the raw data (Table 1) were employed, namely: (1) the arithmetic

Table 3

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Ova</th>
<th>Specimen</th>
<th>Ova</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>2</td>
<td>786</td>
</tr>
<tr>
<td>2</td>
<td>578</td>
<td>3</td>
<td>696</td>
</tr>
<tr>
<td>3</td>
<td>760</td>
<td>4</td>
<td>455</td>
</tr>
<tr>
<td>4</td>
<td>803</td>
<td>5</td>
<td>301</td>
</tr>
<tr>
<td>5</td>
<td>886</td>
<td>6</td>
<td>210</td>
</tr>
<tr>
<td>6</td>
<td>652</td>
<td>7</td>
<td>477</td>
</tr>
<tr>
<td>7</td>
<td>818</td>
<td>8</td>
<td>633</td>
</tr>
<tr>
<td>8</td>
<td>636</td>
<td>9</td>
<td>1,044</td>
</tr>
<tr>
<td>9</td>
<td>741</td>
<td>10</td>
<td>720</td>
</tr>
<tr>
<td>10</td>
<td>669</td>
<td>11</td>
<td>364</td>
</tr>
<tr>
<td>11</td>
<td>310</td>
<td>12</td>
<td>858</td>
</tr>
<tr>
<td>12</td>
<td>856</td>
<td>13</td>
<td>734</td>
</tr>
</tbody>
</table>

Arithmetic mean, 690; standard deviation, 194.02; coefficient of variation, 26.7%. Calculation of t shows that out of 1,000 females one might expect to find four with over 1,000 ova, six with under 200 ova, one with under 100 ova.

| Table 4 |

| Analysis of Recovery of Dry Ova from a Single Gravid Female Passalurus ambiguus |

<table>
<thead>
<tr>
<th>Device</th>
<th>Arithmetic Mean</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation (%)</th>
<th>Recovery of Less than 10 Ova (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH swab</td>
<td>13.4</td>
<td>7.41</td>
<td>55</td>
<td>400</td>
</tr>
<tr>
<td>TP swab</td>
<td>17.6</td>
<td>21.95</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Adhesive</td>
<td>20.3</td>
<td>12.94</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>Glass pestle</td>
<td>7.3</td>
<td>7.02</td>
<td>96</td>
<td>20</td>
</tr>
<tr>
<td>Direct slide</td>
<td>10.3</td>
<td>6.04</td>
<td>59</td>
<td>8</td>
</tr>
<tr>
<td>Brush</td>
<td>26.6</td>
<td>17.39</td>
<td>65</td>
<td>0</td>
</tr>
</tbody>
</table>

*4TP swab 17-6 94 98 203 7-41 02 26-7% Variation 19.4-02; coefficient of variation, 26.7%...
mean, (2) the coefficient of variation, (3) the percentage of tests in which less than 10 ova were recovered. The final assessment was based on the combined result. The arithmetic mean may be considered the least important of these values since a high mean gives no indication of the likelihood of positive cases being missed owing to an occasional low recovery value. However, when the coefficient of variation rises, the likelihood of failure to recover any eggs when few are present also rises but it is never high in any of these methods. Clumping of ova makes it impossible to estimate statistically the likelihood of this happening. From this standpoint it is clear that there is little to choose between the adhesive cellophane swab, the NIH swab, the direct slide and the brush, all of which showed a moderately low coefficient of variation and rarely or never failed to pick up at least 10 ova. The brush and the adhesive cellophane swab displayed a slight superiority over the other two methods by reason of a higher arithmetic mean. The TP swab and the pestle both showed unreliability by their high coefficient of variation and the frequency with which they failed to recover at least 10 ova, despite the fact that the former had a high mean value.

It should be noted that the variability in picking up eggs for each method is due in part to the variability in mean female egg content as shown in Table 3. The computed coefficients of variability for each method, while artificially high, should remain valid for comparative purposes.

All conclusions were complicated by the well-known fact that the eggs tended to clump together. Statistical analysis confirmed that each egg did not have an equal and independent chance of being picked up in these tests. Comparable conditions would obtain, however, in clinical practice. The high coefficient of variation shown by the pestle indicated that perhaps it does not break up the egg-clumps as effectively as Schüffner and Swellengrebel (1943) believed.

Experiments with Wetted Eggs. The results of the second series of experiments in which a standard suspension of ova in physiological saline was used are presented in Table 5.

Analysis of this table shows that the differences in recovery values for a single method are too large to be accounted for by chance. It must therefore be concluded that here also every ovum does not have an equal and independent chance of recovery; in other words, some reclumping must take place either in the suspension or when it dries on the skin.

In arriving at a final assessment the same three indices were used as in the previous series of experiments. It was concluded that although the mean recovery figure with the adhesive cellophane swab was higher, the pestle was the more consistently reliable in view of its lower coefficient of variation. The pestle, in other words, is more likely to pick up some eggs every time. Neither device ever failed to recover 10 ova. Of the remaining devices, the TP swab and the NIH swab both had a low mean recovery figure and a high coefficient of variation and frequently failed to recover 10 ova, indicating a substantial degree of unreliability, while the brush and the direct slide, although showing an almost equally high coefficient of variation, had a somewhat high recovery rate and less frequently failed to recover 10 ova. In only

Table 5

<table>
<thead>
<tr>
<th>Test</th>
<th>NIH Swab</th>
<th>TP Swab</th>
<th>Adhesive Cellophane Swab</th>
<th>Glass Pestle</th>
<th>Direct Slide</th>
<th>Brush</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 (1.4%)</td>
<td>1 (0.3%)</td>
<td>154 (43.3%)</td>
<td>74 (20.8%)</td>
<td>5 (1.4%)</td>
<td>98 (27.6%)</td>
</tr>
<tr>
<td>2</td>
<td>1 (0.3%)</td>
<td>8 (2.3%)</td>
<td>277 (78.0%)</td>
<td>76 (21.4%)</td>
<td>8 (2.3%)</td>
<td>9 (2.5%)</td>
</tr>
<tr>
<td>3</td>
<td>6 (1.7%)</td>
<td>1 (0.3%)</td>
<td>201 (56.6%)</td>
<td>93 (26.2%)</td>
<td>12 (3.4%)</td>
<td>25 (7.0%)</td>
</tr>
<tr>
<td>4</td>
<td>19 (5.3%)</td>
<td>9 (2.3%)</td>
<td>237 (66.8%)</td>
<td>88 (25.5%)</td>
<td>40 (11.2%)</td>
<td>207 (58.4%)</td>
</tr>
<tr>
<td>5</td>
<td>6 (1.7%)</td>
<td>12 (3.4%)</td>
<td>103 (29.1%)</td>
<td>85 (24.0%)</td>
<td>0</td>
<td>41 (15.5%)</td>
</tr>
<tr>
<td>6</td>
<td>2 (0.6%)</td>
<td>4 (1.1%)</td>
<td>175 (49.0%)</td>
<td>49 (13.8%)</td>
<td>13 (3.7%)</td>
<td>27 (7.6%)</td>
</tr>
<tr>
<td>7</td>
<td>2 (0.6%)</td>
<td>3 (0.8%)</td>
<td>85 (24.0%)</td>
<td>102 (28.8%)</td>
<td>31 (8.8%)</td>
<td>39 (11.0%)</td>
</tr>
<tr>
<td>8</td>
<td>36 (10.3%)</td>
<td>2 (0.6%)</td>
<td>131 (37.2%)</td>
<td>86 (24.3%)</td>
<td>20 (5.6%)</td>
<td>34 (9.6%)</td>
</tr>
<tr>
<td>9</td>
<td>19 (5.3%)</td>
<td>1 (0.3%)</td>
<td>148 (41.7%)</td>
<td>73 (20.5%)</td>
<td>25 (7.0%)</td>
<td>13 (3.7%)</td>
</tr>
<tr>
<td>10</td>
<td>5 (1.4%)</td>
<td>5 (1.4%)</td>
<td>200 (56.3%)</td>
<td>72 (20.2%)</td>
<td>55 (15.6%)</td>
<td>37 (10.5%)</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Device</th>
<th>Arithmetic Mean</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation (%)</th>
<th>Recovery of Less than 10 Ova (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH swab</td>
<td>10.6</td>
<td>0.6</td>
<td>9.8</td>
<td>70</td>
</tr>
<tr>
<td>TP swab</td>
<td>4.6</td>
<td>0.3</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Adhesive cellophane swab</td>
<td>171.1</td>
<td>56.4</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Glass pestle</td>
<td>79.8</td>
<td>13.8</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Direct slide</td>
<td>20.9</td>
<td>16.3</td>
<td>77</td>
<td>30</td>
</tr>
<tr>
<td>Brush</td>
<td>53.0</td>
<td>56.3</td>
<td>106</td>
<td>10</td>
</tr>
</tbody>
</table>
one instance (a direct slide test) did any of the devices fail to pick up at least one egg.

The tubes in which the NIH and TP swabs were stored were checked as before for detached eggs by washing them out and centrifuging the washings. No ova were recovered from any of them.

The much higher figures obtained with the adhesive cellophane swab, which, having itself a sticky surface, does not depend on the adhesiveness of the outer coat of the egg for its efficiency, leads to the conclusion that wetting the eggs reduces the adhesive properties of the shell. This was not unexpected since the outer layer of the egg-shell is albuminous and would therefore be removed by solution on wetting the egg with water. The low degree of efficiency shown by the NIH swab, the TP swab, the direct slide and the brush is thus explained, since the adherence of the eggs to these devices depends primarily upon the intrinsic stickiness of the outer shell.

Conclusion. The experiments described show that there is little to choose from the point of view of reliability in the recovery of ova between the adhesive cellophane swab, the NIH swab, the direct slide and the brush provided that the eggs have not been wetted. When wetting has taken place, however, the adhesive cellophane swab and the glass pestle are the most reliable devices.

Since it is often the case that the perianal region is wetted before examination either by washing, by perspiration or, in the case of young children, with urine, it must be concluded that the adhesive cellophane swab is the method of choice, since it alone appears reasonably reliable in the recovery of ova between the dry eggs and of those which have been wetted. Schüffner and Swellengrebel (1943) estimate that 99% of ova present are removed from the perianal region by even a brief wash with water. This fact makes the use of the most reliable method for the recovery of the remainder even more important.

Clinical Considerations

The experiments described in the preceding section give an estimate of the reliability of the six different diagnostic methods tested. Reliability, however, is not the only criterion for judging a method of detecting threadworm infestation. If it is to be of practical value it must be acceptable to the person who is to use it whether he is research worker, general practitioner, clinical pathologist or parent. It must be simple and quick in use. In view of the repeated applications necessary to establish freedom from infestation absence of unpleasantness to the patient is important.

According to Hall (1937) a satisfactory swab for the diagnosis of oxyuriasis should have the following characteristics: (1) It should pick up threadworm eggs dependably. (2) It should deliver them to a microscope slide dependably with the minimum of manipulation. (3) It should be easy to transport with safety from infection and without loss of eggs. (4) It should cause the patient the minimum of discomfort.

The additional qualities which, in our experience, make for practical usefulness are: (5) Simplicity, which makes for ease of handling and speed in use and is especially necessary when a parent or other member of a household is requested to carry out diagnostic tests on a suspected case. (6) Availability of materials, which makes it simpler for a practitioner who meets relatively few cases to check a clinical diagnosis.

The only one of the six methods investigated which fulfils all of these requirements is the adhesive cellophane swab. It is, however, less suitable when the patient is an adult male with abundant perianal hair.

The NIH swab has the disadvantages that it needs time for preparation, is bulky for transport, is not easy to examine, since it frequently flattens unevenly and sometimes contains egg-like artefacts, and is disagreeable to the patient since the sharp corners and pricky edges of the folded cellophane often hurt the tender perianal skin of children, especially when pruritus and scratching have led to soreness.

The glass pestle has the disadvantages of needing special construction in the first instance and of requiring cleaning by scrubbing with soap and water between successive applications. Although slightly more complicated than the other methods it has, in our experience, been easily learned and practised by patients.

The direct slide has the disadvantage of requiring a great deal of time for examination, and, since ova tend to be most numerous at the edge of the slide, they can be easily overlooked if few. Patients experience considerable discomfort from the pressure of the sharp edge of the slide on the soft perianal skin, and for this reason we found this method almost impracticable in use.

The brush is bulky in transport and the process of cleaning for further use is lengthy and tedious, involving scrubbing with soap and hot water. On the other hand the brush caused least discomfort to the patient and was the easiest to examine since the ova tend to congregate in the centre of the cavity slide so eliminating the necessity for searching.

The TP swab, while requiring time for preparation,
if made up like the NIH swab and being bulky for transport, has one unique advantage which makes it the method of choice when ointment has been applied to the perianal skin to allay pruritus. In this circumstance, which renders the other methods nugatory, the paper will not clear since it will be smeared with an opaque film of ointment, but any ova which may be embedded in it can be readily detected by the use of dark-ground illumination.

In Table 7 are given the times occupied in the process of examination of the various devices for ova. These are average figures, obtained by careful timing of several different workers over many thousands of operations. Naturally they make no allowance for inexperience. The time taken in examination is dependent in part on the presence or absence of eggs; negative preparations naturally occupy more time than positives which may often be dismissed in a few seconds. The figures given in Table 7 are for negative preparations only and therefore represent maximum times. Schüffner and Swellingrebel (1943) found that the average time taken to examine a negative NIH swab was 11 minutes whereas a negative pestle slide could be examined in two and a half minutes as against nine minutes and three and a half minutes respectively in our tests.

Summary

The literature relating to the diagnosis of thread-worm infestation is reviewed.

An account is given of investigations made to assess the relative efficiency of six different methods for the diagnosis of thread-worm infestation. Clinical considerations, based on the use of each of the methods in a large number of cases, are also discussed.

It is concluded that of the methods used, namely, the NIH swab, the TP swab, the adhesive cellophane swab, the direct slide, the glass pestle and the brush, the adhesive cellophane swab alone is reliable whether the eggs have been wetted or not and is the only one which fulfils all the requirements of a clinically satisfactory device. It should be replaced by one of the other devices when the patient is an adult male with abundant perianal hair.

The TP swab is the method of choice when ointment has been applied to the perianal skin since any ova embedded therein are revealed by examination with dark-ground illumination.

The authors wish to express their gratitude to Professor Alan Moncrieff, C.B.E., of the Institute of Child Health in the University of London, and to Brigadier J. S. K. Boyd, C.M.G., F.R.S., Director of the Wellcome Laboratories of Tropical Medicine, for the facilities accorded to them for the carrying out this work and for their advice and encouragement during its execution.

They are also indebted to Dr. Deward Waggoner, Professor of Biostatistics in the American University of Beirut, for his assistance in the statistical analysis of the experimental results and for guiding them in the formulation of the correct deductions.

References