Aims Attendance to hospital for children and young people with complex medical needs and autism can be frightening and stressful, due the unfamiliar setting and unknown people, communication difficulties and sensory overload. Currently at our Trust, there are no specific resources for this patient group, and we have received informal and formal feedback that the needs of these young people and their families are not being met. We aim to improve the experiences of children and young people with complex medical needs and autism at our Trust by creating a new patient pathway, involving children and families early to drive change.

Methods We designed a focus group for parents of children with complex medical needs and autism. We identified families from the neurology clinic, and wrote to them to explain the project and our aims and to invite them to take part in the focus group. We followed this up with a phone call to discuss the project further and to answer their questions. The focus group took place in September 2021.

Results Five parents and one grandparent attended the focus group. Between them, they had experience of emergency hospital attendances, inpatient admissions, outpatient appointments, paediatric intensive care, multiple investigations and care across multiple sites in the UK and abroad. Their children attended both mainstream and special schools. There was a wide range of complexity of need, and input from health, school, therapies and social care. The range of experience made for a highly insightful and interesting discussion.

Positive feedback was received for the neurology consultant, epilepsy clinical nurse specialist, play specialists and hospital school team, with a particular focus on parents knowing who to contact when they needed advice and support.

Key areas for change identified included more privacy for adolescents, a leaflet detailing what to expect during an admission, sensory toys, a patient passport and iPads for the emergency department. Families also commented that specific changes could be made to improve their children’s experiences of outpatient clinics, including minimising the wait to be seen, considering whether the child needs to be brought to a face-to-face appointment, the presence of a sensory room and improvements to the phlebotomy room, including the presence of play specialists. They also identified opportunities to join up care between secondary and tertiary services, for example arranging for pre-admission COVID-19 swabs at the local hospital, rather than at the tertiary hospital where the admission was planned. The next phase will be to apply for funding to achieve these aims. We are devising a Makaton passport and a system to help children to communicate using symbols. We will involve the children, young people and families at every stage of our project.

Conclusion Patients and families have a much greater insight into the challenges faced than professionals, and their input is the most valuable tool to drive change. Relationships between patients and professionals have a huge impact on experience of care. We will continue to work with families in order to bring about meaningful and impactful change.

Aims The Intelligence and Development Scales – 2nd Edition (IDS-2) is a broad developmental assessment containing 30 subtests across six Domains: Intelligence, Executive Functions, Psychomotor skills, Social-emotional skills, Scholastic skills, and Motivation and Attitude. The IDS-2 is used worldwide by health and education professionals. It has recently been adapted and translated into English, with the collection of UK norms for 5;0 to 20;11-year-olds. The Psychomotor skills Domain of the IDS-2 measures gross motor, fine motor and visual motor skills. Gross motor skills are assessed only in 5;0 to10;11-year-olds; fine motor and visual motor skills are assessed at all ages. Standardised tests of psychomotor performance are an important component of neurodevelopmental assessment and in particular for a diagnostic assessment for motor difficulties, including Developmental Coordination Disorder (DCD). This presentation describes the content of the IDS-2 Psychomotor skills tasks and examines aspects of reliability and validity of this new tool.

Methods Trained assessors collected data on the IDS-2 from 1367 individuals (48% male) aged 5;0 to 20;11 years across the UK. The UK standardisation data was used to assess internal consistency for fine motor and visual motor skills, as each of these contain a number of similar tasks. In a separate sub-study test-retest reliability was assessed for gross motor skills, re-testing 49 children (63% male, aged 5;1–10;9) after a mean interval of 16 days. Concurrent validity was examined by comparison of performance on the Movement ABC - 2nd Edition (MABC-2). Firstly, a parent/carer of 100 children aged 5;4–15;8 from the UK standardisation sample completed the MABC-2 Checklist. Total Checklist scores were categorised as indicating ‘no movement difficulty’ or ‘highly likely to have a movement difficulty’. The IDS-2 Psychomotor skills scores were then compared for these two groups. Secondly, the performance of 50 children (aged 6;2 to10;11) on the IDS-2 Psychomotor Domain was compared with their performance on the MABC-2 Test. Finally, differential validity was examined by comparing the performance of 25 children (aged 6;2 to10;11) previously diagnosed with DCD to an age and gender-matched typically developing group.

Results Reliability coefficients for the total Psychomotor skills Domain were .78 and .88 for 5–10 and 11–20 years respectively (.66–.89 for fine motor and visual motor subtests). Test-retest reliability was .89 for gross motor skills in 5 to10-year-olds. Concurrent validity with the MABC-2 was supported by (1) statistically significant differences between the two Checklist groups in all three of the IDS-2 subtests and (2) significant correlations between scores (.78, p<.001 for total scores) on the IDS-2 Psychomotor skills Domain and the MABC-2 Test in a group of 50 children. Differential validity was supported, with significantly poorer gross motor, fine motor and visual...
motor scores for 25 children with DCD compared to the typi-
cally developing group.

Conclusion The Psychomotor skills Domain of the new IDS-2
will be a useful addition to the toolkit of assessors working
with children and young adults with DCD. The battery also
offers a means of assessment across broader domains including
Intelligence, Executive Functions and General Development.

871 INFLUENCE OF SCREEN TIME ON SLEEP IN CHILDREN
WITH AUTISM SPECTRUM DISORDER IN URBAN
POPULATION
Prithvi Kamble, Prarthana Karumbaiah K. Ramaiah Medical College and Hospitals,
Bangalore
10.1136/archdischild-2022-rcpch.69

Aims To assess the influence of screen time on sleep in chil-
dren with Autism Spectrum Disorder in urban population.

Methods A cross-sectional study was conducted in a tertiary
care hospital in the southern part of India. The study was car-
rried out on children aged between 2-5 years who were diag-
nosed with autism spectrum disorder by ‘DSM-5 criteria’ and
‘INCLLEN Diagnostic Tool for Autism Spectrum Disorder’. After taking informed consent, the demographic details were
entered in the proforma. The caregivers completed two sets
of questionnaires viz. the Sleep Disturbance Score in Children
[1] and the Digital Screen Exposure Questionnaire [2]. The
data were entered into a Microsoft Excel worksheet and was
analyzed using SPSS 22 version software.

Results A total of 63 children were recruited into the study.
The median age is 3 years. The mean minutes per day of
screen time exposure was 220.60 minutes. Over 60 minutes
per day of screen time was reported by 57 children (90.5%).
Children having screen time exposure >60 minutes were sig-
nificantly associated with sleep disturbances with higher SDSC
scores (P <0.05). Among them, the disorder of initiating and
maintaining sleep was significant (P<0.05) which is repre-
sented in a chart in figure 1. The most common media used
among children with ASD was mobile phones (68.25%), with
YouTube being the favourite content. Children who had less
than 60 minutes of screen time were more likely to engage in
physical activity in contrast to those who spent more than 60
minutes in front of the screen. Children who spent more than
60 minutes in front of a screen were more likely to have
sleep disturbances, with the disorder of initiating and main-
taining sleep being the most prevalent. All the results are
tabulated in figure 2.

Conclusion Studies in the past have shown sleep disturbances
among children with ASD but increased screen time is signifi-
cantly associated with sleep disturbances among children with
ASD. Therefore, introducing and maintaining behavioural man-
agement of sleep hygiene, as well as limiting screen time, could help children with ASD initiate and maintain sleep.

REFERENCES
Jun 22;16(6):e0253313.

NEW ITEM DEVELOPMENT IN A MEASURE OF EARLY
PERSONAL, SOCIAL AND EMOTIONAL SKILLS
Hilary Lane, Louise Stroud, Elizabeth Green, Sue Bloomfield, Ruth Paradise.
1Association for Research in Infant and Child Development (ARICD); 2Nelson Mandela University
10.1136/archdischild-2022-rcpch.70

Aims The early years have long been identified as a critical
time in a child’s development. For children with developmen-
tal delay and disorders, early identification is essential to
improved outcomes and quality of life. Clinicians are chal-
lenged as to how to accurately assess the strengths and needs
of children with developmental delay.

A comprehensive developmental assessment looks at the dif-
cerent core areas of development and maps a child’s perform-
ance compared with children of the same age.

This paper looks at the process of identifying and delineat-
ing test items in the performance measurement of child’s early
personal, social and emotional development from birth to six
years.

Methods The latest revision of the Griffiths Scales involved a
phased process resulting in the release of the Griffiths III in
2016. Initial work in devising test items included reviewing
the rationale and development of the original test (1), sub-
sequent revisions (2,3) literature review on the recent research
in the area, and a review of other tests that include early

Abstract 871 Figure 2

Abstract 871 Figure 1