opportunities for medicines optimisation for paediatric neurology patients it was proposed that greater access to a specialist pharmacist was required to improve MI provision.

Aim To evaluate patient/carer satisfaction with the MI received and assess whether a consultation with a pharmacist may be deemed useful.

Method The Satisfaction with Information about Medicines Scale (SIMS) developed by Horne et al (2003) was adapted for use with paediatric patients. The questionnaire consisted of 15 questions; nine looked at the action and usage (AU) of medication, with a maximum score of 9. Questions 10-15 related to the information provided concerning potential problems with medication (PPM) with a maximum score of 6. The higher the scores, the more satisfied the participants with the level of information received. Parents and their children were invited to attend a consultation with the pharmacist; those that accepted were asked to complete the SIMS questionnaire prior to the appointment and then asked to repeat the questionnaire two months later.

Results 17 families participated, the mean age of the patients was 7.2 years with 47% patients on a combination of three anti-epileptic drugs and 41.2% experiencing daily seizures.

The median total SIMS score was 7, the AU subscale had a median score of 5 and the PPM subscale had a median score of 1. This indicates that participants were only satisfied with 46.7% of the received MI they had been asked about. To account for the different weightings of each subscale the percentage satisfaction for each subscale was calculated. The participants were satisfied with 53.6% of the SIM questions in the AU subscale but only satisfied with 16.6% of the SIM questions in the PPM subscale.

14 families were lost to follow up, the 3 families that repeated the questionnaire indicated that seeing a pharmacist may improve their satisfaction with MI provision. The average total SIMS score increased by 5 after seeing the pharmacist. All 3 families agreed that having an appointment with the pharmacist was very useful.

Conclusion This work has indicated that a pharmacist within paediatric neurology outpatient clinics may increase patient/carer satisfaction with MI provision but further study is required to fully examine the impact in a larger number of patients.

The baseline SIMS survey highlighted a difference between the two subscales with participants more satisfied with information about AU than the very low levels of satisfaction regarding PPM. Studies in adult patients have also found that PPM scores are lower indicating patients do want this additional information. Further work is needed to assess and improve satisfaction with MI provision to paediatric patients and their families.

The greatest limitation was the large number lost to follow-up, severely limiting the ability to assess the impact of the pharmacist intervention. Potentially two months between the two surveys was too long although the intention had been to minimise researcher induced bias.

REFERENCES

P42 EVALUATING THE IMPACT OF TRIPLE COMBINATION MODULATORS ON MEDICATION ADHERENCE IN CYSTIC FIBROSIS

1Sharon Sutton1, 2Paul Mcnally, 3Morinne Howlett, 4John Hayden, 1Children’s Health Ireland at Crumlin; 2RCSI

10.1136/archdischild-2022-NPPG.48

Aim To measure the impact of introduction of triple combination modulator (TCM) therapy on adherence to other cystic fibrosis (CF) therapies.

Method This study is a multi-site non-interventional study of clinical outcomes in CF patients prescribed TCM across 8 clinical sites in Ireland and the UK over 2 years. The study will be conducted over two phases based on TCM approval: 1. 12+ arm (patients 12 years and older), 2. 6+ arm (patients 6-11 years). The effect of the potential drop-off in adherence to TCM is unknown and this knowledge gap will be examined using three methods; self-reported questionnaires (SRQ) [e.g. Treatment adherence questionnaire (TAQ) and Adherence barrier questionnaire (ABQI)]; pharmacy refill data (to calculate Medication Possession Ratio); and electronic devices such as Medication Electronic Monitoring System (MEMS®). Self-report tools and pharmacy refill data will be collated for all participants but due to high cost MEMS will be offered to a subset only (approx. 80 participants).

Results To date, 113 participants have been recruited to the 12+ arm. Recruitment and data collection is ongoing. Preliminary analysis of Medication Possession Ratio (n=5) demonstrated that baseline adherence to hypertonic saline, azithromycin, enzymes and Pulmozyme was low to moderate, further decreasing after TCM introduction. No change for enzymes was found. Adherence to modulators was high, with further increases seen after TCM introduction. Self-report questionnaires (TAQ and PTP) were reviewed for a random 10% of current recruits (n=11). The mean Overall Adherence Index was 90.2%. At 6-month time point, 100% TCM adherence was reported. Airway clearance was the most frequently overlooked treatment with a 10.6% reduction in adherence from baseline to 6 months. Initial recruitment for MEMS® was high (95% recruitment target met) with 60% of participants remaining on the study. Average ‘taking adherence’ using MEMS® for was 78.2% and 82% for Kaftrio® (n=11) and Kalydeco® (n=10) respectively. Overall adherence to TCM using MEMS® was 78.9%.

Conclusion These early preliminary results suggest that adherence to TCM is overestimated in SRQs and pharmacy data in comparison to MEMS®. These trends are similar to those shown in previous studies [1-3]. As a result of the high drop-out rate a feedback form has been developed to gain a better insight into the reasons why continued participation is low. Recruitment and data collection is ongoing, 6+ arm is due to commence recruiting in Q4 2021.

REFERENCES