DOSE RANGE CHECKING (DRC) IN PAEDIATRIC ELECTRONIC PRESCRIBING: AN EFFECTIVE TOOL IN REDUCING PRESCRIBING ERRORS?

1Elizabeth Kane*, 1Alice Lippitt, 2Octavio Aragon Cuevas, 3Andrea Gill. 1Liverpool John Moores University; 2Alder Hey Children’s Hospital

10.1136/archdischild-2022-NPPG.25

Aim DRC software aims to reduce dosing errors,1 however, it has been linked to ‘alert fatigue’, a phenomenon which causes prescribers to potentially override alerts despite being clinically relevant.2 3 The project aim is to determine the effectiveness of the DRC software implemented into the electronic prescribing software used in a paediatric tertiary hospital.

Method A retrospective clinical audit was undertaken to investigate the DRC alerts produced during July and August 2020. The DRC alert subtypes and the top 10 drugs that produced alerts were described. Alerts generated due to a ‘missing value’ (height, weight, or dose unit) were counted but not analysed further. Dose-based alerts were clinically screened to ascertain whether they were appropriately or inappropriately overridden. This involved considering whether the DRC recommendations differed from BNFC recommendations, local in-house guidance, or deviations occurred due to individual patient idiosyncrasies or specialist prescribing. Data from dose-based alerts was interrogated to determine whether increasing the acceptable dose range limits from 5% to 10% would have significantly reduced the number of alerts fired. Alerts that were inappropriately overridden and resulted in a medication error were categorised by severity using the EQUIP study scoring tool.3

Results 1778 alerts generated in July and August 2020 were analysed. 48% (n=846) of those alerts were produced due to a ‘missing value’. The DRC software did not recognise whether the alerted drug was recorded at the same dose in the patients’ ‘home medications’ (verified drug history) or whether in-house dose guidance was used. If recognised, the number of alerts would have reduced by 21.4% (n=200). Conversely, increasing the DRC acceptable dose range from 5 to 10% would have reduced the number of alerts only by 4.5% (n=42).

Overall, 741 alerts were clinically screened. 95% (n=704) of these were not actioned by prescribers. Of those alerts 5.2% (n=37) should have been acted upon and this led to medication errors. 35% (n=13) of the errors were significant and 22% (n=8) were serious according to the EQUIP study tool. 62.5% (n=5) of serious medication errors involved a ‘Narrow Therapeutic Index’ drug, such as gentamicin and liposomal amphotericin. 38% (n=5) of significant errors related to no prescribed maximum frequency for intravenous ondansetron.

Conclusion DRC systems are effective tools for preventing prescribing errors,1 but it is concerning to see that several significant and serious prescribing errors occurred despite an alert generation. This potentially suggests that alert fatigue may counteract the error preventing effects of DRC alerts. Therefore, further refinement of DRC systems is required to reduce alert fatigue. Unfortunately, increasing the acceptable dose range limits from 5 to 10% does not appear to be a simple way of sorting this problem. Removing ‘missing value’ alerts would significantly reduce the number of alerts generated. Including in-house guidelines alongside BNFC dose recommendations into the DRC software would also reduce unnecessary alerts.

REFERENCES

ROLE OF THE PHARMACY TEAM IN PAEDIATRIC PALLIATIVE CARE

1Muhammad Yunus Hossain, 1John Weinman, 2Sian Gaze*. 1King’s College London University; 2 Evelina London Children’s Hospital

10.1136/archdischild-2022-NPPG.26

Background In 2016, NICE published a guideline on ‘End of life care for infants, children and young people with life-limiting conditions: planning and management’.1 These guidelines recommended that pharmacists should be embedded in every paediatric palliative care team.

Aim To identify the roles of pharmacy teams in paediatric palliative (PP) care and examine the effectiveness of their services as perceived by PP doctors and nurses. To compare 2020 survey results with a study conducted in 2014 by Khan et al,2 to assess whether any changes could be observed.

Method This was a repeat of the study conducted in 2014 by Khan et al. A SurveyMonkey link was emailed to members of the APPM (Association for Paediatric Palliative Medicine) and NPPG (Neonatal and Paediatric Pharmacist Group) as well as to community pharmacies working closely with local children’s...
hospices in London and South East England. The questions were identical to the ones used in 2014. The data was analysed using Microsoft Excel.

Results The number of respondents totalled 107 (Response rate: 19%).

The respondents consisted of 84 individuals who were pharmacists or pharmacy technicians, and the remaining 23 were non-pharmacy staff such as doctors or nurses.

The majority of the pharmacy team reviewed palliative care patients on a monthly basis, and this trend had increased since 2014. Overall, an increase in patient contact was observed. The clinical involvement of the pharmacy team in PP care had increased, especially in medicines optimisation and prescribing. Since 2014, the number of pharmacists prescribing for children with palliative care needs appeared to have doubled. Other roles where pharmacy involvement appeared to have increased included advising on storage of medicines, investigating medication errors and formulary development.

Conducting research/audits, writing guidelines and financial reports were not popular tasks. In 2020, only 25% of the pharmacy team were involved with writing patient information leaflets for children with palliative care needs.

Lack of staffing, time and funding were the most frequently reported impediments to the pharmacy team taking on more clinical roles.

In 2014 and 2020, the British National Formulary for Children (BNF-C) was the most popular reference source routinely used by all staff groups. The Palliative Care Formulary, syringe driver compatibility charts and Handbook of Drug Administration via Enteral Feeding Tubes were also popular references amongst the pharmacy team. Doctors and nurses utilised the Alder Hey Book of Children’s Doses and the APPM Master Formulary more than pharmacy staff.

In 2020, doctors and nurses gave a median of 10/10 regarding their satisfaction of the pharmacy team’s contributions. The minimum score given was 6. Khan’s study reported a median rating of 9, but the difference observed was not considered to be statistically significant (p value ≥0.05).

Conclusions This study inferred that the involvement of the pharmacy team in paediatric palliative care has increased since 2014. More of the pharmacy team are handling clinical issues amongst the pharmacy team. Doctors and nurses utilised the Alder Hey Book of Children’s Doses and the APPM Master Formulary more than pharmacy staff.

As this was a service evaluation, ethics approval was not necessary. The project was registered with each hospital’s clinical audit department.

Results The three process maps were analysed and potential improvements for the medicines optimisation pathway were assessed by a paediatric pharmacy subgroup using ease-impact matrix. Potential improvements include: exploration and use of Electronic Prescription Service by secondary and tertiary care, improving communication through Information Technology systems between prescribers and hospital pharmacists, and the creation of a transparent standard operating procedure regarding medication supply following VOC.

Seventy-one patients’ families across the sites were interviewed between January-May 2021 to reflect on their experience of receiving medications following a VOC. Four GPs and one PCN pharmacist were interviewed in May 2021 to assess the impact of VOC on primary care.

Key reflections from themes generated include the convenience of receiving medications from hospital pharmacies following VOC, satisfaction of the current process, including medicines packaging and medicines information provided to patients and their families.

Other reflections included limitations of the current process and its implication on patient safety. Medicines information helplines and education provided by pharmacists were regarded by patients’ families and GPs as a valuable attribute.

Conclusion Patients’ families appreciated the current model of care, however patients’ families and primary care healthcare professionals have identified both challenges and suggestions for improvement in delivering the current model. Future research should focus on a mixed mode of integrated care with green and amber medications prescribed directly to community pharmacies with clinical screening and counselling conducted by hospital pharmacists.