ultrasound scan, uroflow, urinalysis and culture, urine Ca/creatinine, and first-morning urine osmolality. Patients <5 years of age, with secondary enuresis, and those who did not show at the follow-up visit were excluded.

Oral desmopressin lyophilisate was recommended to all patients with PMNE and normal bladder capacity. After one month of therapy, initial success was assessed according to ICCS. Correlation coefficients were used to identify variables that were significantly correlated to complete response. ROC analysis was used to determine the urine osmolality cut-off value. Odds ratio and correlation coefficients in favor of complete initial success were analyzed with binary logistic regression.

There were 48 patients with PMNE who received desmopressin and were followed for treatment success. Of tested variables, only lower urine osmolality was found to be significantly in favor of complete response to desmopressin therapy. ROC analysis determined the value of ≤814 mOsm/L as a cut-off value for complete success (sensitivity 65% and specificity 75%). The odds ratio for complete success with desmopressin therapy in PMNE patients with first-morning urine osmolality ≤814 mOsm/L was 9.086 (95% CI 1.893 – 43.618, P = 0.006).

For PMNE patients with high pretreatment morning urine osmolality, an alternative treatment to desmopressin should be considered because of the significantly higher risk of treatment failure.

363 TWO BOYS WITH C3/DDD GLOMERULONEPHRITIS

Danko Milosevic*. University Hospital Centre Zagreb
10.1136/archdischild-2021-europaediatrics.363

A boy, 16 years of age. During routine analysis hematuria and proteinuria (up to 1.84 g/L) were found along with hypertension (max 160/70 mmHg). Physical examination showed no abnormalities. Total complement activity (classical pathway) of 7 CH50/ml (ref. 48-103 CH50/ml) and total complement activity (alternative pathway) of 0% (ref. 70-105%).

C levels were low (median 0.06 g/L) while C4 were within reference ranges.

Anti-C1q IgG autoantibody was 677 U/ml (ref. <52), C3-nephritic factor 11.0% (ref. <10%) and sC5b-9 (terminal complement complex) 1640 ng/mL (ref. 110-252 ng/mL). Complement factor I antigen was decreased 51% (ref. 70-130%) as well as complement factor B antigen of 45% (ref. 70-130%).

These results support the presence of AP dysregulation with overactivation.

Lupus aDNA negative Kidney biopsy revealed C3 glomerulonephritis. Due to nephritic syndrome the boy was treated with pulse methylprednisolone therapy, rituximab and cyclophosphamide. Until present, proteinuria was reduced (up to 0.48 g/L) with microhematuria. Due to a persistently low C3 and elevated sC5b-9, we are now considering Eculizumab as off label treatment option. Genetic analysis ongoing.

Second boy, 5 years of age, was treated for nephritic syndrome in regional hospital. Physical examination showed no abnormalities. As significant proteinuria (3.62g/L) with low C3 was found. A kidney biopsy revealed Dense deposit disease. Total complement activity (classical pathway) 18 CH50/ml (ref. 48-103 CH50/ml) and total complement activity (alternative pathway) 0% (ref. 70-105%). C3 and C4 levels were low (0.1 and 0.06 g/L respectively). C3-nephritic factor was elevated 41,3% (ref. <10%) as well as sC5b-9 (terminal complement complex) of 342 ng/mL (ref. 110-252 ng/mL).

LDH was elevated of 552 U/L. Creatinine level was elevated at its highest of 198 μmol/L. Activity of the alternative and classical pathways were both deficient. Complement C3 and C4 levels are decreased, while those of factor I and B are in the normal range. The terminal pathway activity marker level is increased. The above results support a complement activation and consumption involving at least the classical pathway. The boy was treated with pulse methylprednisolone therapy, rituximab and cyclophosphamide. After initial therapy elevated serum creatinine levels decreased, as well as proteinuria. C3 stabilized around 0.50, C4 normalizes at 0.40, while proteinuria decreased to 0.9 g/L.

364 URINARY INCONTINENCE

1,2,3 Szabó*, 1 Bajusz, 2K Lasoncon, 2 Gy Réti, 3B Lombay, 3M Polositzer, 3D Molnár, 1B Sulja, 1M Sajthy, 1M Merksz, 1A Kiss, 1Heim Pál National Paediatric Institute, Budapest; 2Velkey László Child Health Centre, Borsod County Central Hospital and University Teaching Hospital, Miskolc, 3Department of Family Care Methodology, Institute of Health Science, Semmelweis University, Budapest
10.1136/archdischild-2021-europaediatrics.364

Functional and morphological anomalies could cause urinary incontinence. The essence of urinary incontinence and