The results of our study could afford the basis of research regarding the use of natural products and their inclusion complexes as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity.

Acknowledgements This Research Project is co-financed by Greece and EU (European Social Fund) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» and the Program titled ‘Support for Post-doctoral Researchers- cycle B’ (MIS 5033021), implemented by IKY (State Scholarships Foundation).

Abstracts

317 L-ASPARAGINASE ACTIVITY MONITORING IN PAEDIATRIC HEMATOLOGICAL CANCER PATIENTS – CROATIAN EXPERIENCES

Jasna Lenihek Krieka, Ana Katusic Bojanec*, D Buljan, Izabela Kranjac, Vlunja Amanda, Gordana Jakovljevic, Department of Medical Biology, University of Zagreb, School of Medicine, Zagreb, Croatia; Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia

10.1136/archdischild-2021-europaediatrics.317

L-asparaginase has been an essential component of paediatric-based multiagent therapy for children diagnosed with haematological cancer.

Drug’s effect is based on depletion of asparagine in the circulatory system thus depriving unmatured malignant cells of amino acid. However, some children are faced with silent inactivation or, in worst cases, an allergic reaction to the drug and is recommended to monitor drug activity levels in order to detect these patients and modify the therapy. We had set up the first laboratory for asparaginase-activity testing in Croatia at the Department of Laboratory diagnostics, Children’s Hospital Zagreb. Our aim is to present the first experiences in asparaginase monitoring from March 2018 till October 2020 from the 2 pediatric centers (Zagreb and Split).

Children between 1 and 18 years old with diagnosed pediatric acute lymphoblastic leukemia (ALL) or lymphoma (NHL) were included in the prospective L-asparaginase study. Blood samples were collected prior to and during treatment. Serum was separated and frozen prior to shipping. Over 100 samples were processed, among which some were repeatedly measured in order to determine the inter-day precision due to sample thawing. Activities of three commercially available drugs, E. coli-derived asparaginase or Erwinia chrysanthemi asparaginase or E.coli pegylated, PEG-asparaginase were measured in intervals as recommended. Laboratory measurements used plate reader-based indooxine method where L-aspartic beta-hydroxamate (AHA) was a substrate for the enzyme. The reading time was optimized to ensure the best results.

41 patients (38 ALL and 3 lymphoma cases) were included in the study. Among thirty native E. coli asparaginase–treated patients, three (10%) of them developed an allergy and four (13%) of them showed silent inactivation.

Patients without hypersensitivity to native drug had serum median trough levels of 281,3 U/L after 48 h. Six patients were treated with Erwinia asparaginase; one developed an allergy and none silent inactivation while others had median through levels 90,3 U/L after 48 h. The PEG asparaginase therapy was given to 4 patients where median trough decline was observed (938,4 U/L, 479,5 U/L, 170,3 U/L for 7, 14 or 21 days, respectively).

Serum samples were stable after second thawing as were no significant difference in asparaginase level after re-testing. Additionally, the absorbance results showed no significant difference between the 10 minutes reading intervals.

Here we conclude that therapeutic drug monitoring is important for pediatric patients with hematological cancer. The spectrophotometric-based method showed precise performance and has been added to our routine clinical protocols.