Objective Food protein-induced enterocolitis syndrome (FPIES) is a non–IgE-mediated gastrointestinal food hypersensitivity manifesting as profuse repetitive vomiting, often with diarrhea. FPIES consists of two types, acute and chronic. In the acute type, ingestion of triggering foods induces vomiting, diarrhea, lethargy, and hypotension in up to 4 hours. Episodes can last 24 hours, and both vomiting and systemic symptoms benefit from ondansetron. In the chronic type, there is vomiting and diarrhea, but the time between ingestion and symptoms is longer and the presentation milder. Mild but persistent vomiting and diarrhea cause malnutrition and hypoalbuminemia. Diagnosis is based on clinical symptoms and confirmed via positive food challenge. Symptoms resolve after elimination of triggering foods and recur with re-exposure. This report aims to review the presentation of FPIES using a case-driven approach.

CASE Female 1-year-old admitted with repetitive projectile emesis and diarrhea. Symptoms subside after 24 hours with iv fluid resuscitation, and vomiting began with complementary food. Initially diagnosed with a cow milk allergy, but after ingesting bread, she had another attack. This attack lead to a diagnosis of Celiac disease, and she was prescribed a gluten-free diet. After ingesting gluten free pasta, she had another attack with loss of consciousness. After fluid resuscitation, laboratory tests including anti-endomysium IgA, cow-milk IgE, wheat IgE, egg yolk IgE, Immunoglobulins, and ANCA were normal. Esophagogastroduodenoscopy and colonoscopy were normal, with a pathology report of mucousal fragments including lendoid follicles. An oral food challenge with possible triggering foods was then performed. The patient was admitted, and a peripheral intravenous line was placed. After 30 minutes of feeding with rice, vomiting with diarrhea presented with tachycardia and hypotension. Furthermore, her neutrophil count was increased. IV saline fluid bolus, IV ondansetron, and IV methylprednisolone were administered. Emesis stopped, and abdominal pain subsided within 30 minutes. After 24 hours, all symptoms subsided. With a diagnosis of acute FPIES, she was discharged with strict dietary restrictions as well as future food challenge plans for other possible triggering foods.

Conclusion FPIES is often misdiagnosed as an acute viral gastrointestinal illness, sepsis, or anaphylaxis, and a diagnosis of FPIES can often be delayed for months. As in this case, delay in diagnosis lead to unnecessary diagnostic evaluations and erroneous treatments. After diagnosis is approved with an oral food challenge, prognosis is good. However, avoiding offending foods and appropriate episode management requires hard work from both the families and the health personnel.

The diagnosis of acute pancreatitis (AP) in children has been improving worldwide probably due to better awareness of physicians evaluating children with gastrointestinal symptoms. The common causes include anatomic abnormalities, drug toxicity, trauma, and systemic diseases, however, a significant proportion of cases are still being labeled as idiopathic. The aim of our study was to highlight the etiopathogenesis of acute pancreatitis in children diagnosed in a University Hospital Centre during a 7 year period.

The charts of pediatric patients, from 2013-2020, with at least one documented episode of acute pancreatitis requiring hospitalization, were reviewed retrospectively. Data included a clinical picture, laboratory findings (serum and urine amylase and lipase), abdominal ultrasound and MRCP findings as well as results of genetic analysis in a group of patients with previously unresolved etiology.

We identified 33 patients with AP, 18 boys and 15 girls. The mean age at diagnosis was 12, 42 (range 3-18, median 14). The most frequent was idiopathic AP (n=19), followed by anatomical abnormalities (n=7).

Drug-induced AP was seen in four patients due to valproate, enalapril and in two of azathioprine toxicity. Post-traumatic pancreatitis was diagnosed in one of our patients. Two of our youngest patients showed positive results in gene testing with both of them being heterozygous for serine protease inhibitor Kazal type 1 (SPINK1) mutation. Both of them developed acute recurrent pancreatitis later.

In this retrospective analysis, the etiology of acute pancreatitis has similar distribution to previously reported causes in the paediatric literature. Genetic testing is a valuable tool in identifying the nature of previously designated idiopathic pancreatitis, especially in those with a more severe and recurrent presentation.

Alagille syndrome (AGS) is a rare genetic disorder inherited in autosomal dominant pattern that affects the liver, heart, and other organ systems. Major feature of AGS is liver damage caused by paucity of the bile ducts which leads to chronic cholestasis marked by jaundice, pruritus, xanthomas and sometimes cirrhosis. Common associated anomalies include cardiac anomalies (peripheral pulmonary stenosis), butterfly vertebrae, posterior embryotoxon, dysmorphic facies and renal dysplasia.

We present a long-term follow up of two siblings aged 13 and 7 year diagnosed with AGS during infancy.

The older sibling, female, presented at 7 weeks with jaundice and history of acholic stools and dark urine. Laboratory tests confirmed cholestasis with elevated liver enzymes, bile acids, alpha-feto-protein and 5’-nucleotidase.

Hepatic scintigraphy confirmed severe intrahepatic cholestasis.

Ursodexicolic acid (UDCA) and phenobarbital were introduced. Due to dysmorphic facial features (prominent forehead, broad nasal bridge, triangular facies and deep set eyes) AGS was suspected and confirmed by further evaluation.