junior to senior, and took turns directing the care of the patient sequentially. Slides showed clinical images such as bedside monitoring, blood gases and laboratory blood results. The scenario was proactively facilitated by the host as the clinical reasoning and management became more complex.

**Results**
Overall, virtual simulation was very well received in a time when learning has become much more accessible but also more didactic. Our feedback questionnaire from 12 remote learners showed they both enjoyed and engaged with the scenarios, and particular highlights included capturing the sense and pressure of an emergency in methods 1 and 3, passing team leadership on as a baton in method 3, but also the anonymity and group interactivity of method 2. All scenarios benefited from debrief in the traditional manner.

**Conclusions**
We believe that virtual simulation has a role in the current healthcare environment, and is both possible and educationally valuable, with many different strengths that can be combined for a blended learning environment.

---

**British Academy of Childhood Disability**

**678**

**BODY SHAPES DON’T DEFINE A PATIENT, SO WHY DOES IT AFFECT BASIC LIFE SUPPORT? AN IN-SITU SIMULATION SCENARIO ON CHOKING FOR A CHILD WITH AN ALTERED BODY SHAPE**

Lucine Nahabedian, Annabel Copeman. **Royal Wolverhampton NHS Trust**

10.1136/archdischild-2021-rcpch.138

**Background**
A recent article published in Nursing Children and Young People outlined how basic life support needs to be adapted for children with altered body shapes (Thomas, 2020). Paediatric basic life support (BLS) courses do not include information on how algorithms, such as choking or chest compressions, can be amended for patients with anatomical deformities to ensure that high quality basic life support can still be delivered.

**Objectives**
The main focus of this simulation was to understand that children with altered body shapes and complex medical needs may not tolerate standard back blows or abdominal thrusts, and how to amend both of these techniques in such instances.

**Methods**
We developed an in situ simulation case, whereby a 10 year old child with spastic quadriplegia and scoliosis presents in our paediatric assessment unit with respiratory distress. As the medical team begin to assess the patient, he vomits and then starts choking. Candidates are expected to recruit help by pulling the bedside alarm, and then begin using the choking algorithm to attempt to dislodge the obstruction.

We used a Diamond Debrief model to debrief candidates and used written feedback, in the form of free text responses and rating scales, to ascertain if the candidates found the session beneficial to their learning.

**Results**
There were 7 candidates ranging from a trainee nurse practitioner, junior doctors in training and clinical fellows. The average confidence in dealing with this scenario increased from 2.5 to 4.2 (whereby 1 denotes very low confidence and 5 represents very high confidence). Every candidate
commented that the scenario had helped them to understand how to amend the BLS algorithms in view of altered body shapes.

Conclusions This in situ simulation highlights the importance of addressing how techniques and guidance delivered in BLS courses has to be tailored to the child or young person, and yet, is not necessarily discussed in clinical areas. The impact of this scenario demonstrates the power of using in situ simulation to address gaps in collective team knowledge and experiences, and how guidance needs to be written to be inclusive and to maintain quality of care for all patients who use our services.

We aim to run this and similar simulation scenarios involving children with altered body shapes in order to constantly develop the multidisciplinary team skills.

Quality Improvement and Patient Safety

'BUT HOW DO WE DO THAT? WHAT DO WE NEED?' USING MULTIDISCIPLINARY SIMULATION TO LEARN HOW TO SAFELY FACILITATE RADIOLOGICAL IMAGING FOR VENTILATED NEONATES

Background Prior to 2019, magnetic resonance imaging (MRI) for ventilated neonates was not undertaken at our trust. Instead, a dedicated neonatal transport team would transfer the patient to the tertiary centre for imaging and then repatriate the patient. Due to the intensity of resources required for this 40 minute procedure, it was proposed that the teams and facilities at our trust should facilitate this instead. Training on using the transport incubator is provided at induction and team members are designated on the day to assist. Previously, the procedure has taken over 4 hours to complete.

Methods A multi-professional, inter-specialty in-situ simulation was delivered whereby a ventilated neonate was transported from the neonatal unit to MRI. The neonatal and radiology team were briefed and were asked to stay in their normal roles. Once the scenario was completed, the team were debriefed using a diamond debrief model and written feedback was requested to obtain qualitative and quantitative responses.

Results There were 6 candidates from the neonatal and radiology department. Reflective comments were overwhelmingly positive, with candidates explaining how the simulation helped to understand each other’s roles or ‘the strengths and failings in our common knowledge’. Candidates commented how this simulation had improved their confidence, with the average confidence score in managing this scenario increasing from 3.33 (where 1 is very low confidence to 5 as very high confidence) to 4.5. Two candidates suggested that equipment stocks needed to be re-evaluated e.g. MRI compatible ventilators and two others suggested formalising the process into a checklist or protocol and then running the scenario again.

Conclusions This simulation demonstrated why simulation based education is key to identifying latent threats and knowledge gaps due to systemic flaws. Since conducting this simulation, several changes have been made to the process in line with the candidates feedback. From a neonatal perspective, a checklist is being ratified as well as a laminated instruction card on how to set up the transport incubator. The MRI team collated key action points and have circulated them to those working with paediatric patients. Overall, the simulation has established a better communication channel for both teams to liaise with each other to improve the patient experience and safety. We aim to run this scenario again when all these interventions have been approved for use.

Association of Paediatric Palliative Medicine

BEYOND THE DRUGS – PARENTAL PERSPECTIVES ON MANAGING MULTIFACTORIAL PAIN IN PAEDIATRIC PALLIATIVE CARE

Caroline Sprinz, Charlotte Holland, Emily Harrop. Helen and Douglas House

Background Management of pain in Paediatric Palliative Care can be complex and challenging, and for some children, a single pharmacological agent is not enough. This may be due to the coexistence of several types of pain; difficulty tolerating medications; difficulty describing the pain; and emotional or behavioural overlay. Managing these symptoms is challenging for the child, their carers, and healthcare professionals alike.

Objectives
- To explore the parental experience of multifactorial pain in children with palliative care needs.
- To identify effective communication techniques with children with multifactorial pain, and their parents.
- To review the management of multifactorial pain, both pharmacological and non-pharmacological.

Methods A case-series of children (3 girls, age-range 2–8 years) known to the children’s hospice, with complex multifactorial pain were identified. Through an 8 item qualitative questionnaire allowing free-text entry, patient and family experience of pain, coping strategies, and communication techniques were explored. For each case, pharmacological and non-pharmacological methods of pain control were explored. A general inductive approach was used for thematic analysis.

Results

Themes identified were:

Honesty between children, parents and healthcare professionals. One child was very anxious about leaving her mother when she died. Her mother said ‘she keeps telling me that she doesn’t want to leave me, but we are not religious and I’m not sure what to say’. Age-appropriate communication about the end of life helped to reduce her agitation.

Listen to parents about signs of pain. Believe parents if they say their child is in pain: ‘Even if you don’t see the pain, don’t discount it.’ Being made to feel like they are ‘making up’ pain, is frustrating and demoralising. One parent was told – ‘this type of tumour isn’t painful’.

Being able to respond to breakthrough pain is empowering for parents. So is advocating for their child: ‘Whilst I have no control over the fact that she will die from this in the near future, I can advocate for her to be as comfortable as possible, with as little pain and as little emotional distress as possible.’

The value of distraction, but also the awareness that this may be challenging to provide at home. Limiting sensory

Abstracts

Arch Dis Child: first published as 10.1136/archdischild-2021-rcpch.138 on 30 September 2021. Downloaded from http://adc.bmj.com/