collaboratively with the palliative care network and The CoLab Partnership to use our course to improve training across the UK and for all multidisciplinary healthcare professionals involved in paediatric palliative care.

British Association of Perinatal Medicine and Neonatal Society

667 TREATMENT OF RETINOPATHY OF PREMATURITY: COMPARATIVE ANALYSIS OF INTRAVITREAL RANIBIZUMAB VS LASER TREATMENT 7 YEARS’ EXPERIENCE AT LEVEL 3 NICU, SAUDI ARABIA

1Ahmed Elabaya, 1Mona Abdelbaky, 2Hassan Alshehri, 3Ilene Padua, 1Ahmed M Hamed, 1Abdulrahman Albaraji, 1Ammar Alidawalibi, 1Amer Amnari, 1Fawaz Kahtlan. 1Prince Sultan Military Medical City; 2College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia; 3College of Medicine, Alfaisal University, Riyadh, Saudi Arabia

Background Retinopathy of prematurity (ROP) is a vasoproliferative disorder which affects eyes of premature infants. Conventional laser photocoagulation and anti-vascular endothelial growth factors (anti-VEGF) like Ranibizumab are used for ROP treatment.

Objectives To compare the efficacy of Intravitreal Ranibizumab (IVR) to laser photocoagulation for treatment of ROP.

Methods Very Low Birth Wight (VLBW) infants born at Prince Sultan Military Medical City, Riyadh, Saudi Arabia were enrolled during 7 years period from January 2011 to December 2017. Screening criteria for ROP were infants who were born at gestational age of less than 32 weeks and/or had birth weight of <1500 g and unstable clinical course. From January 2011 till June 2014 the standard treatment was laser photocoagulation. We started IVR treatment for ROP from July 2014. Patients in either group (laser group and IVR group) were candidates for treatment in case they develop type 1 ROP.

Results During study period, 1315 infants were screened for ROP, 183 infants developed ROP (13.9%) and 35 infants out of 183 received treatment. A total of 69 eyes from 35 infants were included in the study and analyzed. Ranibizumab group included 21 infants (42 eyes). Laser group included 27 eyes from 14 infants.

It was observed that 36 out of 42 eyes showed regression of ROP in IVR group whereas all the 27 eyes treated with laser showed regression of ROP in laser group (P 0.09). There was significant difference in recurrence of ROP in both groups with 12 eyes (28.6%) showing recurrence of ROP in IVR group compared to 1 eye (3.7%) in Laser group (P 0.01). In IVR group, 8 eyes required second dose of IVR and 10 eyes required laser treatment which were significantly higher than laser group wherein no infants required either IVR or laser (p 0.02 and 0.01 respectively). No significant difference was found in both groups in terms of refractive error, and anisometropia. Squint incidence was significantly higher in laser group (29.6%) versus IVR group (4.8%) (P = 0.01).

Conclusions Overall data suggests that IVR showed decreased rate of ROP regression as compared to laser. Moreover, significant recurrence of ROP was observed after IVR treatment as compared to laser treatment. More extensive and careful follow up are needed to monitor regression and recurrence of ROP after IVR treatment.

Quality Improvement and Patient Safety

668 IMPROVING AWARENESS OF STAFF WELLBEING IN A PAEDIATRIC HAEMATOLOGY AND ONCOLOGY UNIT

Shona Johnston, Amy Mitchell, Joanna Craven, Laura Mitchell. Oxford University Hospitals NHS Foundation Trust

Background Healthcare staff wellbeing has never been such a priority. The Covid pandemic has impacted our lives personally and professionally.

Objectives To increase awareness of and engagement in wellbeing within a paediatric haematology and oncology unit.

Methods We undertook a number of PDSA wellbeing projects from September 2020. These included:

- A wellbeing email (initially twice weekly) to all departmental and support services staff, including non-clinical staff.
- A ‘Celebrate the Small Things’ board for staff messages.
- A ‘HALT’ (hungry, angry, late and tired) box to encourage breaks and sustenance.
- A Christmas celebration of our staff, based on an online survey; highlighting team and individual strengths.

We undertook an online survey, requesting feedback on the length, content and frequency of wellbeing emails, and requesting further qualitative feedback on the project.

Results Since September 2020, 31 wellbeing emails have been sent out to 75 members of our department, including medical, nursing, support and secretarial staff. Content is varied and includes videos, coaching-type questions, articles and challenges. Themes include civility, gratitude, finding joy, mental health resources, humour, acknowledging and validating our difficult job, and valuing colleagues. As a marker for ‘engagement’, 29 emails have been received back in response.

There have been 27 messages added to our celebration board.

Our Christmas celebration highlighted 27 individuals, and acknowledged the work of the Wellbeing Team. Individuals were sent an email certificate. Comments specific to the wellbeing team included, ‘Thank you for recognising the need and taking time to care for us all’ and ‘I think both the wellbeing emails and promotion of wellbeing has been fantastic. What may seem like a nice little email can have a huge impact not just on people’s wellbeing but has as a knock on effect on their motivation, productivity and general output.’

Eleven staff completed our survey (15% response rate); 72% rated the emails as ‘very’ or ‘extremely’ helpful. All respondents felt the emails were the right length. 63% felt they were the right frequency, with 36% feeling they were too frequent. Comments on the project were overwhelmingly positive; they included ‘simply knowing that there is someone (some people) who care about us and want to make this a more positive environment’ and ‘the content is great!’ and ‘I think it is great to raise the wellbeing agenda, such an important and overlooked area.’
Conclusions Wellbeing is multi-faceted and as such is difficult to measure. We have measured markers for engagement in our project rather than wellbeing per se.

There was a low response rate to our survey, though those who did respond were very positive. This is likely to be a confounding factor of the motivation of responders being those who are ‘engaged’. From the survey results we have reduced the frequency of emails to weekly, and have acted on suggestions for content.

Overall our project has been well received and has raised the importance of staff wellbeing within our department.

Quality Improvement and Patient Safety

LEARNING FROM DEATHS – STILLBIRTHS, CHILDREN AND YOUNG PEOPLE

Elizabeth Leith, Elizabeth Leith, Nelly Ninis, Patricia Bourke. Chelsea and Westminster NHS Foundation Trust; Imperial College Healthcare NHS Foundation Trust

Background Structured judgement reviews (SJR) are designed to help acute hospitals learn from retrospective mortality reviews. The process ensures a traditional, clinical-judgement review method but in a standardised format with a view to identify and make improvements in quality of care. 1

Trained reviewers score six phases of care from admission to end-of-life care. They also make explicit written comments about care for each phase. At the end of the review, a subjective ‘avoidability of death judgement score’ is made, the scoring system is as follows:

- Score 1 definitely avoidable
- Score 2 strong evidence of avoidability
- Score 3 probably avoidable (more than 50:50)
- Score 4 possibly avoidable but not very likely (less than 50:50)
- Score 5 slight evidence of avoidability
- Score 6 definitely not avoidable

‘The result is a relatively short but rich set of information about each case in a form that can also be aggregated to produce knowledge about clinical services and systems of care.’ 1

The trusts ‘Learning from Deaths Policy’ mandates that all deaths amongst children, young people, 16–25 year olds and stillbirths undergo an SJR.

Aim To highlight learning from avoidable and unavoidable deaths amongst stillbirths, children and young people <25 years old, over an 18-month period across the trust.

Methods Review cases that underwent a SJR, over an 18 month period from July 2017 – December 2018. The trust SJR secure database was used to capture the data. In cases were the ‘avoidability of death score’ was 3 or less i.e. suggesting the death may or was avoidable – the cases were reviewed in detail. In cases were the ‘avoidability of death score’ was 4 or above, the recommendations and key learning points were reviewed.

Results 3154 cases underwent a SJR. 171 deaths occurred in the sub-group we analysed. The structured judgement of avoidability of death in the cases are detailed below:

Conclusions The data seemed to mirror itself – problem areas identified in avoidable cases, scoring 1–3, conversely were highlighted as areas of good care in unavoidable deaths, scoring 4–6. These areas have been stratified into two key themes with learning points highlighted below:

- Patient assessment and management:
 - Know and use local guidelines
 - Identify and respond to problems early
 - Involve seniors
 - Involve the multidisciplinary team
- Communication:
 - Adequate documentation
 - Clear communication
- Of results
 - Overcoming ‘language barriers’
- With patient and family regarding problems
 - Parental involvement, discussion and support
 - Future planning

REFERENCE

Association of Paediatric Emergency Medicine

PAEDIATRIC CARDIAC ARRESTS – A DESCRIPTIVE AUDIT REPORTING CARDIAC ARRESTS PRESENTING TO A TERTIARY PAEDIATRIC EMERGENCY DEPARTMENT

Frazer Snowden, Shrouk Messahel, Charlotte Durand. University of Liverpool; Alder Hey Children’s Hospital NHS Foundation Trust – Emergency Department

Background The 2018 Out-of-Hospital Cardiac Arrest Outcomes Registry saw 530 paediatric Out of Hospital Cardiac Arrests (OHCAs) in England, with a survival to discharge rate of 12.1%. It is widely reported that paediatric OHCA have poor outcomes, with downtime being a strong prognostic determinant for survival to discharge. This audit will retrospectively describe local patients attending a tertiary paediatric emergency department (ED) presenting after undergoing a cardiac arrest between 2015–2020.

Objectives

<table>
<thead>
<tr>
<th>SJR Score</th>
<th>Avoidable:</th>
<th>Definitively avoidable</th>
<th>Strong evidence avoidable</th>
<th>Possibly avoidable</th>
<th>Possibly not avoidable</th>
<th>Definitely not avoidable</th>
<th>Total Number of Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stillbirths</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>49</td>
<td>65</td>
</tr>
<tr>
<td>Neonates</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>7</td>
<td>46</td>
<td>56</td>
</tr>
<tr>
<td>Paediatrics</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>16–25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>