to increase their ‘buy-in’ and confidence in the process and ensure we provide a meaningful learning experience.

Methods The first session was designed and run by a multidisciplinary group of educators. We devised an online learning session which comprised of peer-led, multi-role OSCE stations with integrated expert clinician feedback.

Using the online system Blackboard Collaborate (BC) we were able to accommodate 120 students simultaneously in 3 sessions, each facilitated by an administrator, paediatric consultant and clinical teaching fellow. The students were split in to smaller ‘break out rooms’ of 4 and rotated through 10 OSCE stations of varying clinical scenarios.

The students simulated the roles of candidate, actor and examiner, each giving a distinctive learning perspective. The clinicians observed stations and then ran feedback sessions at the end of each circuit. This was an opportunity for students to ask questions and for the clinicians to provide guidance based on their observation.

Using Likert scales, we asked the students to rank their confidence at the beginning and end of the session and gathered qualitative feedback from faculty and students.

Results Students gave overwhelmingly positive feedback.

- 14% vs 70% of students indicated a confident response about passing the OSCE in the pre-course vs post-course question. The average confidence score was 2.72 vs 3.69 for pre and post; a statistically significant change (p = <0.05). 96% students agreed that the online OSCE had been useful.

Faculty felt the sessions were well planned and ran smoothly. The students found the session beneficial and gave valuable suggestions about timing and size of stations. This feedback has been used to adjust the design of subsequent sessions, the first of which will take place in March 2021.

Conclusions In conclusion, this project provides a framework for how a virtual programme can be effectively used in place of traditional face-to-face teaching. The session was designed and organised by faculty, but peer led and it received positive feedback. The qualitative feedback has been incorporated into the session design. With continued PDSA cycles and iterative development we aim to continue to improve the quality of this mock OSCE programme and the student’s confidence in it.

British Association of Perinatal Medicine and Neonatal Society

1674 PARENTAL VIEWS ON NEURODEVELOPMENTAL FOLLOW-UP OF CHILDREN BORN PRETERM

1.) Josephine Agyeman-Duah, 2 Stephen Kennedy, 3 Francis O’Brien. 1 University of Oxford; 2) Oxford University Hospitals, NHS Foundation Trust

10.1136/archdischild-2021-rcpch.789

Abstract 1674 Table 1 Emerging key and sub-themes from interviews

<table>
<thead>
<tr>
<th>Parental recommendations</th>
<th>Communication and information flow with the NHS (about preterm neurodevelopment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Train health visitors on neurodevelopmental patterns of preterms to better support parents</td>
<td>- Received general information but not on neurodevelopment</td>
</tr>
<tr>
<td>- Provide opportunity for parents to request neurodevelopmental follow-up</td>
<td>- Reassuring care team</td>
</tr>
<tr>
<td>- Establish a contact link or hotline for parents to go to if they have concerns</td>
<td>- Never had any conversation on preterm neurodevelopment</td>
</tr>
<tr>
<td>- More information sharing from the NHS</td>
<td>- Limited information and don’t know what to expect</td>
</tr>
<tr>
<td>- Neonatal team to catch-up with parents post-discharge</td>
<td></td>
</tr>
<tr>
<td>- Provide assurance to parents about their preterm child’s development</td>
<td></td>
</tr>
<tr>
<td>- Benchmarking for preterm milestones</td>
<td></td>
</tr>
</tbody>
</table>

Prior knowledge of neurodevelopmental outcomes for preterms

- Naïve
- Minimal
- Knew there could be a problem but not sure what to look out for

Personal experience with neurodevelopmental assessments for preterms

- Children received health checks but nothing on neurodevelopment
- Health visitors less knowledgeable and competent to provide preterm neurodevelopmental follow-up
- Parents feel incompetent to assess their children’s neurodevelopment
- Difficulty in getting referral for neurodevelopmental follow-up
- Need for closure before discharging from neurodevelopmental follow-up

Parent experience with preterm birth

- Depressing
- Demanding
- Uncertainties
- Worries
- Unprepared for preterm birth
- Limited ongoing support
- No concerns

Lessons learnt

- Although parents’ experience of preterm birth was not the focus of this study, parents spoke spontaneously about their personal experiences and the challenges of a preterm birth
- Preference for neurodevelopmental follow-up by the neonatal team to alleviate concerns

Parent satisfaction with current neurodevelopmental follow-up for preterms

- Good
- Dissatisfied
- Quite poor
- Unable to rate satisfaction due to absence of neurodevelopmental follow-up for their preterm child

Impact of Covid-19

- Disappointment with missed opportunity for comprehensive developmental follow-up due to Covid-19
- Limited or no interaction with health visitors due to Covid-19 impacting care for preterms

Faculty felt the sessions were well planned and ran smoothly. The students found the session beneficial and gave valuable suggestions about timing and size of stations. This feedback has been used to adjust the design of subsequent sessions, the first of which will take place in March 2021. In conclusion, this project provides a framework for how a virtual programme can be effectively used in place of traditional face-to-face teaching. The session was designed and organised by faculty, but peer led and it received positive feedback. The qualitative feedback has been incorporated into the session design. With continued PDSA cycles and iterative development we aim to continue to improve the quality of this mock OSCE programme and the student’s confidence in it.
Background Parental involvement is a critical pillar in the provision of quality care for preterms, especially given their increased risk of compromised neurodevelopment. However, parental opinions, experiences and preferences regarding neurodevelopmental follow-up of preterms have hardly been studied or considered in healthcare planning.

Objectives
- To understand what parents know about neurodevelopmental outcomes for children born preterm.
- To describe parents’ experiences, satisfaction and recommendations for neurodevelopmental follow-up of preterms.

Methods
METHODS Purposive sampling: parents of 2- to 3-year-old children who were born preterm.

Virtual in-depth interviews
Thematic content analysis
The South Central – Hampshire B Research Ethics Committee approved the study (REC reference: 19/SC/0474).

Results
Emerging themes are shown in table 1 from 17 interviews of parents whose children were born at <32 weeks (n=5), 32 to <34 weeks (n=5) and 34 to <37 weeks’ gestation (n=7).

Limitation:
Potential recall bias of past experiences by parents.

Conclusions
Parent interviews have emphasised the need for policymakers and the neonatal care team to consider parents’ knowledge, experiences, satisfaction and preferences for preterm neurodevelopmental follow-up.

References
1. doi: 10.1016/j.clp.2018.05.001. PMID: 30144844
2. https://www.bmj.com/content/320/7227/114

British Society for Rheumatology

REAL WORLD TREATMENT OF JUVENILE SYSTEMIC LUPUS ERYTHEMATOSUS (JSLE): EVIDENCE FROM THE UK JSLE COHORT STUDY

1Naomi Egbivwie, 2Andrea L Jorgensen, 3Michael W Beresford, 3Christian M Hedrich, Eve MD Smith, on behalf of the UK JSLE Study Group.
1Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK; Liverpool University Hospitals NHS Foundation Trusts, Liverpool, UK; 2Department of Biostatistics, University of Liverpool, UK; 3Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK

Background Juvenile-onset systemic lupus erythematosus (JSLE) is a chronic autoimmune/inflammatory disorder that affects multiple organs. JSLE has a more severe phenotype when compared to adult-onset SLE that can result in significant, sometimes life-threatening, sequelae. To date, no standardised treatment approaches are available, and clinical practice differs between clinicians and centres. The Single Hub and Access point for paediatric Rheumatology in Europe (SHARE) recommendations were published in 2017, with the aim of harmonizing treatment and improving outcomes.

Objectives
The primary aim was to explore UK JSLE treatment approaches, utilising longitudinal data from the UK JSLE Cohort Study. The secondary aim was to investigate compliance with SHARE treatment recommendations.

Methods
Data from the UK JSLE Cohort Study collected between 01/2010 and 05/2020 were accessed. Patients fulfilled 4 or more American College of Rheumatology (ACR) criteria for SLE and were diagnosed at <18 years. At each visit, paediatric British Isles Lupus Assessment Grade 2004 (pBILAG-2004) scores were calculated. Data on the sequence of the immunosuppressants used was extracted. To explore how different clinical manifestations of JSLE may guide treatment choice, pBILAG organ domain scores (active/moderate involvement = A or B) were considered. Logistic regression was used to determine if treatment choice was associated with specific organ domain involvement(s). Given the data collected by the UK JSLE Cohort Study, we were able to assess for compliance with 11/25 SHARE JSLE treatment recommendations.

Results
First-, second- and third-line immunosuppressant treatments described are in addition to hydroxychloroquine and corticosteroids. The most commonly used first-line immunosuppressant treatment was mycophenolate mofetil (MMF) (72/197, 37%), followed by azathioprine (56/197, 28%), and methotrexate (43/197, 22%). MMF was also the most common second-line treatment (40/197, 20%), followed by rituximab (23/197, 12%). Cyclophosphamide, azathioprine and methotrexate were also used as a second-line treatments in few patients. Rituximab was the most commonly chosen third-line treatment (15/197, 8%).

Considering different organ domain involvements, MMF was the most commonly used treatment across the majority of organ domains with the exception of the gastrointestinal domain (azathioprine; Odds ratio (OR) 3.10; 95% confidence interval (CI): 1.59–6.04; p=0.004). Patients with renal involvement were 1.99 (95% CI: 1.65–2.41; p=0.004) times more likely to receive MMF (p<0.01) than any other organ domain. Patients with neuropsychiatric (OR 3.10, 95% CI: 1.80–5.33), renal (OR 1.61 95% CI: 1.16–2.23), cardiorespiratory (OR 5.05 95% CI: 2.82–9.04), haematological (OR 2.82 95% CI: 1.92–4.16) and mucocutaneous (OR 1.95 95% CI: 1.39–2.74) involvements are significantly more likely to receive cyclophosphamide as compared to other organ domain involvement (p-values <0.01). Patients with MSK involvement were more likely to receive methotrexate (OR 2.55, 95% CI: 1.87–3.48; p<0.01). The use of ciclosporin was very sparse. High levels of compliance were demonstrated within the UK JSLE Cohort Study for 9/11 SHARE recommendations.

Conclusions
Commonly used first-line JSLE immunosuppressants in the UK include MMF, followed by azathioprine and MTX. RTX is the most commonly used second- and third-line agent. Across UK JSLE Cohort Study centres, treatment is largely in accordance with SHARE recommendations assessed.