British Association of Perinatal Medicine and Neonatal Society

1252 NEONATAL SARS-COV-2 ANTIBODIES AT DAY 14 OF LIFE, 3.5-FOLD HIGHER THAN HER COVID-19 ASYMPTOMATIC MOTHER

James EG Charlesworth, 2Ree Thee Bhatt, 3Poonam Kapila, 4Indranil Misra. 1Department of Paediatrics, Milton Keynes University Hospital NHS Foundation Trust; 2Department of Paediatrics, Milton Keynes University Hospital NHS Foundation Trust; 3Department of Microbiology, Milton Keynes University Hospital NHS Foundation Trust

Background Throughout the COVID-19 pandemic, it has been unclear how SARS-CoV-2 infection (by vertical transmission or natural infection) would affect neonates, with a significant number of case reports and series identifying neonates requiring respiratory support. A single report suggests that paediatric multisystem inflammatory syndrome was demonstrated in a 24-day-old.

Together, these concerns justify screening for SARS-CoV-2 RNA and antibodies in unwell neonates without clear infective focus, particularly with high community prevalence. Maternal SARS-CoV-2 antibodies usually match those observed in the neonate.

We present a 14-day-old neonate with SARS-CoV-2 anti-nucleocapsid antibodies at a 3.5-fold greater concentration than her mother.

Objectives To describe differential SARS-CoV-2 antibody titres in a neonate and her asymptomatic mother.

Methods We conducted a retrospective review of clinical notes, with the mother’s consent.

Results A female neonate was admitted on day 14 of life with fever and 1 day of jittery movements noted by her mother. She had a history of bilateral aniridia (partially observed in her father and brother, currently under clinical genetics investigations) and haemolytic anaemia (DAT positive at birth, on folic acid treatment). She had no syndromic features and was otherwise well. Born at term, by spontaneous vaginal delivery with an uneventful antenatal history.

Clinical examination was normal, other than a fever up to 39 degrees. She underwent a full septic screen including urinalysis, blood cultures and a lumbar puncture. Bloods demonstrated CRP 106 (maximally 136 at 24 hours), with normal full blood count. CSF microscopy showed significant white blood cells (WBC 347/µL with 65% neutrophils, RBC 105/µL), and no microorganisms. No microorganisms were demonstrated in CSF by BioFire meningitis/encephalitis panel (including SARS-CoV-2 using BioFire respiratory panel), or subsequent culture. However, admission urine was leukocyte, nitrite and glucose positive (WBC 21/µL by microscopy), growing E. coli and Enterococcus. US KUB was normal. Chest X-ray demonstrated hazy opacification but nil focal.

Given the presentation, the patient was treated with 7 days of IV cefotaxime and amoxicillin, covering for bacterial meningitis, clinically improving by day 2.

Due to presentation at the height of the second-wave of the COVID-19 pandemic, there was initial concern of SARS-CoV-2 infection. Her mother was asymptomatic, with negative nasopharyngeal swabs. Nasopharyngeal swabs for SARS-CoV-2 RNA in our patient were negative on day 0, 2 and 3 of admission. However, SARS-CoV-2 anti-nucleocapsid (1.84 AU/mL, positive threshold ≥1.4 AU/mL) IgG was demonstrated. Given the unexpected result, her mother was tested, initially reported as negative, later revised to borderline (0.53 AU/mL). Both were re-rested 10 days from discharge. Anti-nucleocapsid results were reproduced, whereas both mother and patient had significant anti-spike IgG (312.4 and 98.3 AU/mL, respectively, positive threshold ≥50 AU/mL), without vaccination.

Conclusions We highlight the need to corroborate SARS-CoV-2 antibodies in neonates with paired maternal samples, and to explore both anti-spike serology with discordant anti-nucleocapsid results. Our case results from an asymptomatic infection, likely close to birth, producing differential active transport of anti-nucleocapsid antibodies across the placenta, producing 3.5-fold higher neonatal titres.

British Association of Perinatal Medicine and Neonatal Society

1253 NONINVASIVE CONTINUOUS STROKE VOLUME MONITORING IN TERM AND LATE PRETERM NEONATES USING WHOLE BODY ELECTRICAL BIOIMPEDANCE: A CLINICAL VALIDATION STUDY

Roshni Mansfield, 2Sundar Sathiyamurthy, 3Christoph Lees, 4Jayanta Banerjee. 1Department of Neonatology; Queen Charlotte’s and Chelsea Hospital, Imperial College Healthcare NHS Trust; Biomedical Research Centre, Imperial College London; 2Department of Neonatology, Queen Charlotte’s and Chelsea Hospital, Imperial College Healthcare NHS Trust; 3Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction Faculty of Medicine, Imperial College London; 4Department of Fetal Medicine, Queen Charlotte’s and Chelsea Hospital, Imperial College Healthcare NHS Trust

Background Non-invasive, continuous monitoring of cardiac output (CO) could transform care of sick neonates through earlier detection and improved targeted management of cardio-ovascular compromise. Whole body electrical bioimpedance (WBEB) has been developed for non-invasive CO measurement but has yet to be validated for use in neonates. WBEB may have significant advantages over intermittent, operator-dependent echocardiography.

Objectives This study aimed to validate WBEB (NiCaS monitor, NI Medical, Israel) for use in healthy, term and late preterm neonates, compared to echocardiography.

Methods Well neonates <12 hours old born to healthy mothers at ≥35 weeks gestational age were recruited. Two NiCaS monitor pads were applied to supine babies in a left wrist-right ankle configuration for two hours; an echo was performed during this time by a consultant neonatologist trained in echocardiography. Left ventricular (LV) stroke volume (SV)
was measured using standardised echo techniques. The NICaS monitor uses fluctuations in WBEB to calculate SV at 20-second intervals using a proprietary algorithm. The median of 15 minutes of NICaS data prior to the start of the echo for each baby was used in the analysis, since babies were more likely to become distressed during the echo, reducing the quality of the NICaS data through movement artefact. Extreme, non-physiological outlier values when babies were unsettled were excluded from NICaS SV data. R (R Core Team, 2019) software was used for data analysis, including descriptive statistics, Bland-Altman analysis and Pearson correlation.

Results 35 neonates were recruited (20 females), with a median (range) gestational age of 39 +3 weeks (35 +6 – 42 +2) and birth weight of 3.34 kg (2.2–4.4 kg). Monitoring was performed on day one for all babies, and additionally on day two for four babies who remained in the hospital. Five babies did not have NICaS data immediately prior to the echo due to the need to feed: therefore, we included 34/39 paired measurements in the final analysis. The mean (SD) echo LSVV was higher than that of NICaS SV (1.90±0.44 vs 1.52±0.38 ml/kg, 95% CI: -0.57 to -0.29; p < 0.0001). Bland-Altman bias was 0.43 ml/kg, with limits of agreement from -0.36 to 1.21 ml/kg. Mean percentage error was 40%, but when corrected for the percentage error of echo, the true precision was 27%. The Pearson correlation between the two measures was r=0.54 (p=0.001; 95% CI: 0.24 to 0.74).

Conclusions We postulate that the higher echo LSVV compared to NICaS may be because echo LSVV measurements were made pre-ductus arteriosus (patent in 28/34 measurements), while NICaS calculates SV from peripheral signals (post-ductus arteriosus). The NICaS’ true precision was 27%, which is within the clinically acceptable percentage error for new devices (30%), and there was a significant correlation between the NICaS SV and echo LSVV measurements. These results indicate that the NICaS monitor may be reliable for SV monitoring in healthy term and late-preterm neonates. If validity is confirmed in term and preterm infants, we envisage that WBEB could be used as a complementary clinical tool for continuous haemodynamic monitoring in neonatal intensive care, resulting in a step-change in clinical practice.

British Association of Perinatal Medicine and Neonatal Society

1255 LESS INVASIVE SURFACTANT ADMINISTRATION (LISA) – OUTCOMES AND PROGNOSTIC FACTORS AT A LEVEL 3 NICU

Lindsey C McVey, Carolyn Abembeth, Princess Royal Maternity Hospital, Glasgow

Background Less invasive surfactant administration (LISA) is delivered to neonates via a thin catheter, while the function of the glottis is maintained. There remains some debate as to which babies will benefit most from LISA, and the best threshold for undertaking this procedure.

Objectives We aimed to review the LISA procedures undertaken at our centre, analyse patient and procedure characteristics, and evaluate outcomes, prognostic factors and procedure complications.

Methods We reviewed all LISA procedures at our level 3 NICU from May 2018 (when LISA was introduced) until September 2020. Patients were identified on BadgerNet as having received surfactant, and case notes were reviewed to identify LISA patients. An audit proforma was completed retrospectively. Data were analysed using one-sample and two-sample Student’s t-tests where appropriate.

Results LISA procedures were undertaken 86 times, including 7 repeat procedures. Median gestational age was 32+1 weeks [range: 24+5 to 41+1]; birth weight 1.72 kg [0.66 kg to 4.29 kg]; time from birth to first LISA procedure 5.7 hours [1.1 hours to 45.0 hours]; and FiO2 prior to LISA 0.35 [0.24 to 1.00]. Pre-medication included fentanyl [76 patients, 88%], atropine [14, 16%] and sucrose [7, 8%]. LISA was successful with a single procedure in 52 patients [66%], while 7 [9%] required repeat LISA and 20 [25%] required later intubation. Of the repeat LISA procedures, 5 [71%] were successful and 2 [29%] required later intubation. When successful LISA procedures were compared with those who required intubation, there was no difference in gestational age [p=0.94], birth weight [p=0.49], or time to first LISA [p=0.53]. FiO2 prior to LISA was lower in the successful group [mean 0.35 vs. 0.42, p=0.05]. To assess for a specific cut off in FiO2 than may predict treatment success, a ROC curve was analysed. The area under the ROC curve was small [0.64] and no specific cut off was possible. 72% had a documented desaturation or bradycardia during LISA. The vast majority responded to simple measures (pause, stimulation, chin lift, increased FiO2). Atropine rescue was required in 5 patients [5.8%]; naloxone in 2 [2.3%]; and an artificial airway (LMA or intubation) in 3 [3.5%]. Bronchopulmonary dysplasia was present in 27.5% of the patients born at < 32 weeks gestation in our unit, compared with 20.5% of LISA patients.

Conclusions LISA was performed in a range of neonates from a gestational age of 24+5 to post-dates babies. Most were pre-medicated with fentanyl, although a proportion were managed with sucrose alone – as is becoming increasingly common internationally. LISA was successful in around two-thirds of our patients, and success rates were similar in our second LISA procedures. FiO2 prior to LISA was lower in the successful group, although no specific cut off was possible. This suggests that a range of factors (such as antenatal steroids, gender, work of breathing) might also be important in determining likely response to LISA. Desaturation or bradycardia requiring significant intervention was rare. Bronchopulmonary dysplasia was less common in the LISA group than in our overall population, although this may be related to differences in baseline characteristics.

British Association of General Paediatrics

1256 PERCEPTION OF PPE (PERSONAL PROTECTIVE EQUIPMENT) AMONGST PAEDIATRICIANS

Pramod Nair, Yashini Kodeeswaran, Nisrien Eltag Mohamed Osman, Satarupa Banerjee. Bedforx Hospital NHS Trust

Background PPE (Personal Protective equipment) use has been mandatory due to the current pandemic with Covid-19 and has been in use for the past 1 year. Use of PPE in paediatrics comes with its own challenges but is likely to be used more