who met the NICE criteria for empirical antibiotics, received antibiotics within the 1 hour target. As part of the action plan for the aforementioned quality improvement project, we endeavoured to review whether all infants identified using the current NICE guidance in fact required empirical antibiotics.

The Kaiser Permanente Sepsis Risk Calculator (SRC) is a multivariate model of assessing the risk of EONS, using maternal risk factors in combination with assessment of infant’s clinical state after birth, that has been developed in the USA. The use of SRC has been shown to significantly reduce antibiotic use in newborn infants when compared to current NICE guidance.

Objectives

To review whether the use of a validated EONS risk calculator (Kaiser Permanente) could reduce antibiotic use in infants at a level 2 unit.

Methods

43 infants over 3-month period (May-August 2020) were identified who met the following criteria:

- ≥35 weeks
- screened for sepsis and received antibiotics
- symptomatic or asymptomatic
- complete data available

Maternal and neonatal notes, and pathology results, were retrospectively reviewed to ascertain the risk factors to calculate the SRC score, determine clinical status and length of antibiotic course, and to review blood/CSF cultures and CRP results. Clinical assessment criteria were altered slightly to be more in keeping with current practice in this unit. The calculated SRC score and recommended actions using EOS incidence 0.5/1000 were analysed in comparison with the management the infant received and pathology results.

Results

The results showed that if implemented the SRC, using an EONS incidence of 0.5/1000 live births and also giving empirical antibiotics to any baby who is recommended a blood culture (which is the practice in some UK units), then antibiotic use could be reduced by 53.5% whilst also capturing all those babies who had a CRP of 20 or above. There was one infant with a positive blood culture but this was confirmed as a contaminant.

Conclusions

This project demonstrates that implementing the SRC using an EONS incidence of 0.5/1000 live births could reduce antibiotic use by 53.5%. There were no specific safety concerns raised from this data, although the low numbers in this sample needs to be considered. There is also a potential for reduction in length of stay for some infants, however, this data needs to be interpreted with caution as it does not capture those infants with risk factors who did not receive antibiotics, but would be recommended an enhanced period of observation when compared to NICE guidance. Further prospective data from this unit would be useful to inform further on the decision to change practice.

Children’s Cancer and Leukaemia Group

60 YEARS OF CHILDHOOD CANCER IN THE WEST MIDLANDS

Helen Curry, Helen Jenkinson, Martin English, Jenny Adiamaki, Mike Hawkins, Raoul Reulen, Helena Gleeson, Birmingham Women’s and Children’s NHS Foundation Trust, University of Birmingham, University Hospitals Birmingham NHS Foundation Trust

934

Background

The West Midlands Regional Children’s Tumour Registry (WMRCTR) is a specialist paediatric cancer registry. Established in 1984, it records all cases of childhood cancer (including benign CNS tumours) in the West Midlands region which accounts for around 9% of the UK population. The WMRCTR has detailed records of children’s cancers from 1957 onwards. The past 60 years have seen huge improvements in childhood cancer survival with five year survival for many diagnoses now exceeding 90% both nationally and in the West Midlands region.

Objectives

The West Midlands region has a diverse and multi-ethnic population with wide variations in population structure, density and deprivation. The main objective was to produce an historical overview of childhood cancer incidence and survival rates in the West Midlands region using the detailed information available within the WMRCTR.

Methods

7913 cases were included; 4411 males and 3502 females (M:F ratio 1:1.3). Cases were aged 0–14 years, resident in the West Midlands with a malignancy/benign CNS tumour diagnosed between 01/01/57 and 31/12/16. International Classification of Childhood Cancer coding was applied. Detailed descriptive statistics for 45 different diagnostic groups and sub-groups were compiled including subsequent malignancies and deaths from all causes. Survival by decade of diagnosis was calculated using Kaplan-Meier survival analysis. Age and sex-specific incidence rates per million and directly age standardised incidence rates were calculated. Vital status was verified against PHE data and the NHS summary care record.

Results

Most diagnoses showed steady survival gains over time. Five year survival from leukaemia was 4.6% [CI 2.6–7.3] between 1957–1966 but 88.5% [CI 84.9–91.3] by 2007–2016 with acute lymphoblastic leukaemia reaching 91.8% [CI 88.1–94.3]. Although not reaching statistical significance, other diagnoses (NHL particularly) showed a decrease in five year survival between recent decades (77.4% [CI 66.4–85.9] during 2007–2016 compared with 85.9% [CI 74.7–92.4] during 1987–1996). Patients with CNS tumours showed improved survival overall. By 2007–2016 five year survival for ependymoma, astrocytoma and medulloblastoma was 95.7% [CI 72.9–99.4], 86.9% [CI 80.3–91.3] and 68.0% [CI 52.0–79.7] respectively. Deaths within 1 year of diagnosis fell from 57.41% to 7.19% over the study period however certain diagnoses showed a notable rise in late mortality. Despite survival rates in excess of 95% for the past two decades, 13% of patients with bilateral retinoblastoma developed a subsequent malignancy with 23.68% of deaths after 20 years. In Hodgkin’s disease, 19.35% of deaths occurred after 20 years with 9% of patients developing a subsequent malignancy.

Conclusions

Statistics were comparable to national data with a small number of disease groups requiring further case mix evaluation (notably NHL, neuroblastomas > 1 year and renal tumours). Amongst patient with liver tumours, ependymoma, astrocytoma and medulloblastoma, the prognosis over the last decade is substantially better than equivalent nationally reported outcomes although small numbers and thus wide confidence intervals must be considered. Overall, steady, sustained improvements in survival were seen, attributable to a greater understanding of tumour biology, intensification of multi-agent chemotherapy and new treatments. The importance of follow-up throughout adulthood to monitor for late effects and subsequent malignancies was clearly demonstrated.