findings. Secondly, all other things being equal, a patient undergoing x-ray will spend longer in ED than one who does not. This potentially has an impact on patient flow, even more important with the current need for social distancing. We plan to use this data as a baseline for future quality improvement work with the aim of reducing chest X-ray use in patients unlikely to benefit.

British Association of Perinatal Medicine and Neonatal Society

803 RETINOPATHY OF PREMATURITY: INCIDENCE AND RISK FACTORS: A HOSPITAL BASED STUDY

1Arik Gupta, 2Vidya Sukumar. 1Leicester Royal Infirmary Leicester UK; 2Sree Narayana Institute of Medical Sciences, Chalaka, Kochi, Kerala, India

Background Survival rate of preterm neonates have reported to be higher compare to previous due to recent advancement in neonatal care with subsequent increase in the number of babies affected by retinopathy of prematurity (ROP). This study evaluates the incidence of ROP and estimates associated potential risk factors.

Objectives To evaluate the risk factors predisposing to severity of retinopathy of prematurity (ROP) in a level III neonatal unit. ROP screening was done by experts from Aravind Eye Hospital, Coimbatore, Kerala using RETCAM. Treatment was offered for Type I ROP and aggressive posterior retinopathy of prematurity (AP-ROP) with intravitreal Injection Bevacizumab (Avastin) and LASER.

Methods Prospective study on infants fulfilling the screening criteria admitted to Neobless (Neonatal Unit, Moulana Hospital Perinthalamana, Kerala, India) between November 2017 to April 2018.

Babies admitted to Neobless who met the following criteria for ROP screening, according to Neobles guidelines for screening, were included in the study.
(a) < 34 weeks gestation, (b) ≤1800 g of birth weight, (c) Babies >1800 g or born after 34 weeks with unstable clinical course requiring cardio respiratory support.

ROP was graded into stages and Zones as per International Classification of ROP (ICROP). Type I ROP or Threshold ROP, is defined as Zone 1 any stage ROP with plus disease.

Zone 1 stage 3 ROP without plus disease and zone II stage 2 or 3 ROP with plus disease. Aggressive Posterior ROP (APROP) is defined as severe plus disease, flat neovascularization in Zone I or Posterior Zone II, intra-retinal shunting, hemorrhages and rapid progression to retinal detachment. Type I ROP and APROP have been grouped into Severe ROP Group, who required treatment for ROP. Type 2 ROP or pre-threshold ROP is defined as zone 1 stage 1 or 2 ROP without plus disease and zone II stage 3 ROP without plus disease. ROP screening was done by experts from Aravind Eye Hospital, Coimbatore using RETCAM.

Treatment was offered for Type I ROP and APROP with intravitreal Injection Bevacizumab (Avastin) and LASER.

Results Out of that 91 babies, who fulfilled the screening criteria, were included in the study. Out of 91 infants screened 9 (9.8%) were diagnosed as Severe ROP and required treatment, the remaining 82 babies (90.2%) did not require treatment (Non ROP group). Out of the 9 cases with Severe ROP, 8 were treated with intravitreal injection of Bevacizumab (Avastin) and only one case required Laser treatment. All of them had good outcome on subsequent follow ups.

Conclusions There was found to be significant association between duration of oxygen therapy (p value <0.001), sepsis (p value <0.001) and blood transfusions (p value 0.001) with Severity of ROP.

British Inherited Metabolic Disease Group

805 CONGENITAL DISORDER OF GLYCOSYLATION WITH FIBULAR HEMIMELIA

1Süleyman Yıldız, 2Sibel Tanrıverdi Yılmaz, 3Samahattin Ertugrul, 1İbrahim Değer, 2İlyas Yolbaş. 1Mardin Deyk State Hospital; 2Dicle University Faculty of Medicine Neonatology Department

Background Congenital disorders of glycosylation (CDG) are a group of hereditary diseases characterized by the deficiency of enzymes involved in proteins glycosylation. CDG are multisystem diseases, caused by more than 140 different genetic defects in glycoprotein and glycolipid glycan synthesis. The most known CDG is PMM2-CDG, in which the genetic defect leads to the loss of phosphomannomutase 2 (PMM2), the enzyme that catalyzes the conversion of mannose-6-phosphate into mannose-1-phosphate.

Fibular hemimelia is also a congenital lower extremity anomaly characterized by complete or partial absence of the fibula. This deformity may consist of only fibular shortening or maybe together with femur, tibia, ankle, and foot deformities. Although rare in occurrence, it is the most common congenital absence of long bone of the extremities. Fibular hemimelia is usually an isolated anomaly and occurs sporadically. However, in our case, it occurred together with congenital disorders of glycosylation.

Objectives We aim to share the clinical features of a patient diagnosed with congenital disorders of glycosylation which has fibular hemimelia and contribute to an increase in the awareness of this disease group.

Abstract 801 Table 1 Stated indications

<table>
<thead>
<tr>
<th>CAP</th>
<th>Effusion</th>
<th>Cardiac</th>
<th>Wheeze</th>
<th>Foreign Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>62%</td>
<td>13%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>2018</td>
<td>55%</td>
<td>3%</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>2019</td>
<td>45%</td>
<td>5%</td>
<td>2%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Abstract 801 Table 2 Discharge diagnoses

<table>
<thead>
<tr>
<th>CAP</th>
<th>Cardiac</th>
<th>VIW/Asthma</th>
<th>URTI</th>
<th>Bronchiolitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>43%</td>
<td>4%</td>
<td>8%</td>
<td>15%</td>
</tr>
<tr>
<td>2018</td>
<td>31%</td>
<td>0%</td>
<td>15%</td>
<td>17%</td>
</tr>
<tr>
<td>2019</td>
<td>26%</td>
<td>0%</td>
<td>13%</td>
<td>8%</td>
</tr>
</tbody>
</table>

805 CONGENITAL DISORDER OF GLYCOSYLATION WITH FIBULAR HEMIMELIA

1Süleyman Yıldız, 2Sibel Tanrıverdi Yılmaz, 3Samahattin Ertugrul, 1İbrahim Değer, 2İlyas Yolbaş. 1Mardin Deyk State Hospital; 2Dicle University Faculty of Medicine Neonatology Department

Background Congenital disorders of glycosylation (CDG) are a group of hereditary diseases characterized by the deficiency of enzymes involved in proteins glycosylation. CDG are multisystem diseases, caused by more than 140 different genetic defects in glycoprotein and glycolipid glycan synthesis. The most known CDG is PMM2-CDG, in which the genetic defect leads to the loss of phosphomannomutase 2 (PMM2), the enzyme that catalyzes the conversion of mannose-6-phosphate into mannose-1-phosphate.

Fibular hemimelia is also a congenital lower extremity anomaly characterized by complete or partial absence of the fibula. This deformity may consist of only fibular shortening or maybe together with femur, tibia, ankle, and foot deformities. Although rare in occurrence, it is the most common congenital absence of long bone of the extremities. Fibular hemimelia is usually an isolated anomaly and occurs sporadically. However, in our case, it occurred together with congenital disorders of glycosylation.

Objectives We aim to share the clinical features of a patient diagnosed with congenital disorders of glycosylation which has fibular hemimelia and contribute to an increase in the awareness of this disease group.
Methods The Illumina Trustight One Sequencing Panel was used for sequencing over 4800 genes known to be associated with a clinical phenotype and spanning 12 Mb of genomic content. The panel studied contains 125,000 probes based on the NCBI37/hg19 human reference genome. X-ray and MRI imaging were performed for fibular hemimelia.

Results The patient was born by elective cesarean section at 38 weeks with 2805 grams. He was the fourteenth pregnancy group; isolated hyponatremia (15 patients, 33.3%), isolated serum levels of Cl and Na, patients were divided into four extremity anomalies. The patient was consulted to the orthopedic unit. Although limb amputation was recommended by surgeons, we investigated possible alternatives. As a result, the patient was referred to an external center for a tibial lengthening procedure.

Conclusions Congenital disorders of glycosylation are a group of hereditary diseases and they may present with different extremity anomalies.

British Society for Rheumatology

808 PROSPECTIVE UK AND IRELAND POPULATION-BASED STUDY OF JUVENILE-ONSET SYSTEMIC LUPUS ERYTHEMATOSUS

Hanna Lythgoe, Eve MD Smith, Ola G Killeen, Clarissa Pilkington, Clare E Pain, Michael W Beresford. 1Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK; 2Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK; Institute of Life Course and Medical Sciences, University of Liverpool, UK; 3Department of Paediatric Rheumatology, Children’s Health Ireland, at Crumlin, Ireland; 4Department of Rheumatology, Great Ormond Street Hospital for Children, UK; 5Department of Dermatology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield

Background Juvenile-onset systemic lupus erythematosus (JSLE) is a rare, multi-system autoimmune disease. SLE most frequently affects adults but onset is in childhood in up to 20% of cases. Where onset is in childhood, disease can be more severe, leading to significant associated morbidity and damage. Objectives This British Paediatric Surveillance Unit (BPSU) study of JSLE aims to describe presenting features, classification criteria, initial management and disease damage in the UK and Ireland population. Methods BPSU methodology was used to identify new diagnoses of JSLE in children <18 years of age between September 2017 and September 2019. Relevant adult clinicians (including adolescent and adult rheumatologists, dermatologists and nephrologists) were also asked to report cases using parallel methodology. Data was collected at diagnosis and at one year follow-up. Data was analysed descriptively. McNemar's test was performed to compare sensitivities of different classification criteria. Results 253 cases were reported with 131 incident cases included to date (122 exclusions: 60 duplicates; 26 diagnosed outside study period; 15 case definition not met; 19 no clinical information; 2 diagnosis removed at one year). Systemic Lupus International Collaborating Clinics (SLICC-2012) classification criteria were more sensitive for classifying patients with JSLE than American College of Rheumatology (ACR-1997) classification criteria (86.3% vs 75.6%, p<0.05). European League Against Rheumatism/ACR (EULAR/ACR)-2019