Objectives Reflecting following an unanticipated cardiac arrest in our paediatric high dependency unit (HDU) where some of the nurses needed more time to check doses, we conducted a quality improvement project to increase familiarity and use of the WETFLAG mnemonic amongst paediatric medical and nursing staff, and to assess the impact on accuracy of emergency calculations as means to minimise the communication errors and time needed to get the right doses prepared and administered in emergencies.

Methods A pre-questionnaire with a proposed clinical scenario was designed and offered to nurses, junior doctors and registrars in the paediatric department in Royal Cornwall Hospital Trust and the responses were collected anonymously during the period from April to the end of June 2020. From August 2020, we used bedside whiteboards and laminated sheets to calculate and document WETFLAG items for each admission fulfilling our local criteria for HDU care. The calculations were performed by a nurse or a junior doctor and co-signed by a senior doctor. A post-questionnaire with another proposed clinical scenario and feedback assessment were offered to the whole team in January 2021 and the data was collected and analysed anonymously. The answers were corrected to the calculated weight for each of the other equations for both the pre and post-questionnaires.

Results Thirty-four responses were collected for the pre-questionnaire including 24 nurses, 6 junior doctors and 4 registrars. For the post-questionnaire, 28 responses were collected coming from 18 nurses, 6 junior doctors and 4 registrars. Registrars despite representing a small proportion showed a good level of familiarity with the emergency calculations both before and post application of the WETFLAG tool (mean scores 96.4% and 82.14% respectively). Junior doctors showed a marked improvement in knowledge represented by an improvement of mean score from 35.7% before the project to 73.8% afterwards. Nurses showed a variable knowledge base before applying the tool scoring a mean of 73.2% on the pre-questionnaire. They scored higher on the post-questionnaire with a mean score of 94.44%. As feedback, 100% of the team members responding to the survey found the WETFLAG tool to be useful in emergency settings and 97% of them found it useful as a teaching tool.

Conclusion The WETFLAG HDU QI project showed improvement in the uniform knowledge base and confidence with emergency doses among the different members of the paediatric team.

British Association of Perinatal Medicine and Neonatal Society

678 USE OF X-RAY INVESTIGATION TO DEFINE LONGLINE TIP (PERIPHERALLY INSERTED CENTRAL CATHETER) IN NEONATES

1Anay Kulkarni, 2Donna Tolentino, 3Justin Richards, 4Sandeep Shetty. 1St. George’s Hospital NHS Trust; 2St. George’s Hospital NHS Foundation Trust

10.1136/archdischild-2021-rcpch.186

Background Longlines are widely used on neonatal units for long term venous access for administration of parenteral nutrition and cardio active drugs in vulnerable neonates. X-ray investigation, either plain or with contrast, is used to define the tip of longline position to ensure safe placement of catheter. Higher mitotic activity, greater radio sensitivity and longer life time for the consequence to manifest makes a preterm infant more vulnerable to radiation damage.1

Objectives

- To identify number of X-rays done to define longline position tip in a neonate admitted to neonatal unit at St. George’s Hospital NHS Foundation Trust
- To identify factors influencing need for more than one X-ray to define longline position
- To assess relationship between sub optimally placed longline and complications associated with longline

Methods A retrospective audit including babies requiring longlines during admission to St. George’s Hospital Neonatal Unit, a tertiary surgical neonatal unit in the United Kingdom, from August 2016 to January 2020. Information was extracted from prospectively collected data (electronic neonatal database, Badgernet UK). A single observer reviewed all X-Rays that were performed to define longline position.

Standard: X-ray exposure of vulnerable neonates should be kept to a minimum, and ideally to a single exposure when confirming long line position, whilst ensuring safe position of the device.

Definition of optimally placed longline:

For Upper limb and scalp: Longline visible on CXR with tip medial to lateral 1/3rd of clavicle and outside cardiac silhouette
For lower limb: Longline visible on AXR. Left leg longline-Crossing midline with tip at level of L3 and outside cardiac silhouette

Results A total of 552 longlines for 361 babies with median gestational age 28 weeks (23–41+5) and median birthweight 1366 grams (350–4894) were reviewed. Nearly half of the long lines (311–56%) were inserted for medical indications. The day of insertion ranged from soon after birth up to 194 days of life. More than half (327–59%) longlines needed adjustment after insertion. Almost 20% (93) of longlines were used despite suboptimal position. Insertion site in the upper limb (odds ratio 4.5 CI 3.06 TO 6.6 P<0.001), corrected gestation >28 weeks at the time of insertion (odds ratio 1.45 CI 1.1 to 2.08 P<0.043), highly experienced operator (Odds ratio 1.4 CI 1 to 2.03 P=0.03) were associated with the need for more than one X-ray to define longline position. Complication rates associated with longline in a suboptimal position were higher compared to long lines with an optimal position (odds ratio 1.75 CI 1.06 to 2.86 P=0.027).

Conclusions More than half of longlines inserted required two or more x-rays to confirm final optimal position. Long lines in upper limbs, babies with corrected gestation (>28 weeks) and highly experienced operator were associated with need for > 1 X-Ray to define the position. Sub optimally placed longlines are more likely to be associated with device complications.

REFERENCE