COVID-19 in children with chronic kidney disease: findings from the UK renal registry

As Munro and Faust point out, there appears a stark contrast in the case and mortality rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among children compared with the adult population. Whether infection in children is generally mild or asymptomatic, which goes undetected, or children are less susceptible to contracting the infection is unclear until screening programmes are introduced. What also remains uncertain is the risk of severe infection for children with significant underlying health concerns, including those with chronic kidney disease (CKD). The few studies reported have so far shown reassuringly low numbers and complication rates in children with coexisting diseases such as cancer and liver transplant recipients.

The NHS England COVID-19 service evaluation (https://www.rcpch.ac.uk/resources/covid-19-service-evaluation-audit-care-needs-children-admitted-hospital-england), to date, has identified 220 confirmed cases in England of whom 44.4% of cases have coexisting disease; two children are reported to have CKD.

At the UK Renal Registry (UKRR) and in collaboration with the British Association for Paediatric Nephrology (BAPN), we have established an ongoing weekly COVID-19 surveillance system specifically for children with CKD. Lead clinicians from all 13 UK paediatric nephrology centres are asked to actively report cases with a confirmed positive COVID-19 antigen test result: data including NHS number, date of birth and whether the child is on kidney replacement therapy (KRT: dialysis or kidney transplant) are requested. Leads also inform the UKRR if no cases are identified. Data are checked and validated, with the NHS Demographics Batch Service used to capture the date of death for patients in England and Wales, the devolved nations for which this service is available. The UKRR is part of the Renal Association and collaborates, reports and analyses high-quality clinical data on children and adults with CKD. A legal basis to collect and analyse data is provided under section 251 support for research and audit.

Between 26 March and 15 July 2020, five UK children with CKD who tested positive for SARS-CoV-2 infection were reported; none have died. Cases were identified across the UK and included children with stage IV CKD and stage V requiring KRT. The majority (4/5) were male, with a median age of 11 years (IQR 8–12 years). While such low numbers preclude further analysis of risk factors, these data support the observation that infection in children with chronic coexisting disease is fortunately uncommon. It is likely that this figure represents children unwell enough to attend hospital for testing; however, it is encouraging that none have experienced adverse outcomes to date. In addition to weekly surveillance reporting, linkage of UKRR data for prevalent children in England with advanced CKD (stages IV, V and on KRT) to Public Health England and Hospital Episode Statistics data in the near future will enable us to accurately determine infection prevalence rates as well as comprehensively review infection-related hospitalisation episodes.

In light of these findings, alongside those from international colleagues, the BAPN has relaxed shielding criteria for children with kidney disease, details of which can be found on the Renal Association website (https://renal.org/covid-19/). This work, along with emerging evidence from other specialties, has enabled the Royal College of Paediatrics and Child Health to revise recommendations which have since been adopted by the UK government.

Lucy Plumb,1,2 Fran Benoy-Deeney,1 Anna Casula,1 Fiona E M Bradbon,1 Vincent Tse,1,3 Carol Inward,4 Stephen Marks,5,6 Retha Steenkamp,1 James McCall,1,7 Dorothea Nitsch1,8

1UK Renal Registry, The Renal Association, Bristol, UK
2Population Health Sciences, University of Bristol Medical School, Bristol, UK
3Department of Paediatric Nephrology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
4Faculty of Population Health Sciences, University College London Institute of Child Health, London, UK
5NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
6Department of Cardiovacular Sciences, University of Leicester, Leicester, UK
7Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
8Correspondence to Dr Lucy Plumb, UK Renal Registry, Bristol BS34 7RR, UK; lucy.plumb@bristol.ac.uk

Twitter Lucy Plumb @lucyplumb and Vincent Tse @VincentTse

Acknowledgements We thank our British Association for Paediatric Nephrology and UK Renal Registry (UKRR) colleagues for their ongoing support.

We are grateful to the registry leads from the 13 UK paediatric nephrology centres for submitting weekly infection data to the UKRR: Susan Burns, Mairead Convery, Shuman Haq, Shivaram Hegde, Andrew Lunn, Michal Malina, Grace McCall, Henry Morgan, Mordi Muorah, Kay Tjemman, Manish Sinha and Dean Wallace. LP is funded by a National Institute for Health Research (NIHR), Doctoral Research Fellowship (2016-09-055). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Contributors Concept and design: LP, YT, CI, SM and JM. Acquisition, analysis or interpretation of the data: LP, FB-D, AC, FEMB, RS, JM and DN. Drafting of the manuscript: all authors. Critical revision of the manuscript for intellectual content: all authors.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests LP reports grants from the National Institute for Health Research (DRF-2016-09-055) and Kidney Research UK during the conduct of the study.

Provenance and peer review Not commissioned; internally peer reviewed.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.


Accepted 15 July 2020

Published Online First 24 July 2020

Arch Dis Child 2021;106:e16. doi:10.1136/archdischild-2020-319903

ORCID iDs

Lucy Plumb http://orcid.org/0000-0002-3873-8567
Vincent Tse http://orcid.org/0000-0003-3175-1475

REFERENCES


