Assessment. A second certified consultant (DD) measured the internal diameter of PDA on the same 2D and colour echocardiography cineloops. They were blinded to each other’s measurements. AK repeated measurements at a later date, blinded to his original measurements.

Results (Table 1) Bland-Altman Analysis examining PDA internal diameter measurements by two operators on the same cineloops.

Intra-observer analysis showed an r^2 correlation coefficient of 0.68 (2D) and 0.53 (Colour). Comparison of all measurements showed Colour measurements a mean of 0.29 mm higher than 2D.

Conclusion The poor repeatability coefficients and repeatability indices, lead us to conclude that there is significant inter- and intra-observer variability in 2D and Colour echocardiography measurements of PDA diameter, even on the same cineloops. Thresholds and timing of treatment for PDA remain controversial. We advise caution when using diameter as surrogate marker for degree of shunting.

G555

THE MATERNAL AND NEONATAL MICROBIOTA CORRELATES OF PRETERM BIRTH AND ADVERSE NEONATAL OUTCOMES

1R Adam, 2M Temmerman, 3R Ochieng, 4M Carvahlo, 5P Okrio, 3MC Quek, 2E Gulavi, 1D Atanasi. 1Department of Pathology, Aga Khan University, Nairobi, Kenya; 2Department of Obstetrics and Gynecology, Aga Khan University, Nairobi, Kenya; 3Department of Paediatrics and Child Health, Aga Khan University, Nairobi, Kenya

10.1136/archdischild-2020-rcpch.473

Aims Preterm birth is the leading cause of perinatal morbidity and mortality worldwide. There is a need for a better understanding of the correlation of vaginal microbiota, placenta microbiota and placental inflammatory changes with preterm birth. Necrotizing enterocolitis (NEC) is the most devastating complication of prematurity which might be caused by intestinal dysbiosis. Our study aimed to explore the vaginal microbiota, placental microbiota and histological changes in the placenta correlates with preterm labor, and determine whether fecal microbiota in premature infants differs from the term infant.

Method A case-control design was used to enroll 50 women admitted in spontaneous labor between 26 to 36 weeks and 50 controls matched for age and parity who presented in labour after 37 weeks. At birth, the infants were also enrolled. We obtained a vaginal swab from the mother prior to delivery, placenta, infant rectal swabs or stool samples. These samples were assessed using 16S ribosomal RNA (rRNA) gene sequencing. Placentas for histopathological analysis. Using a bioinformatics approach phylogeny tree was created. Beta-diversity was calculated using Permutational Multivariate Analysis of variance and Bray-Curtis dissimilarity indices were measured.

Results The vaginal microbiota in both study groups revealed a community rich in the Lactobacillus genus; 90.4% of the sample consisted of different Lactobacillus species. There were no differences in community richness of microbiota between the term and preterm groups. Preterm placentas were associated with greater rates of inflammation (43.3%) compared to term placentas (23.3%). Placenta microbial samples had a sequence read success rate of only 5.7%. Three preterm infants (7.3%) developed NEC, one (2.4%) preterm infant and one (2.4%) term infant developed gram-negative sepsis. General low yield of microbiota amongst the infants with NEC and Gram-negative sepsis in the meconium.

Conclusions There is a spectrum of diversity in vaginal microbiota of women with the term and preterm labor with no clear evidence of any specific microbiota composition patterns that are associated with preterm birth. Acute histological chorioamnionitis was associated with preterm birth. There is a lack of evidence to support the existence of a placenta microbiota. Our study supports the theory that a lack of commensal microbiota can lead to the development of NEC.

G556(P)

UTILITY OF CARDIAC ENZYMES IN THE DIAGNOSIS OF MYOCARDIAL DYSFUNCTION IN ASPHYXIATED TERM NEWBORNS – A PROSPECTIVE STUDY

MR Kulkarni, BC Yalamali. Pediatrics, S. Nijalingappa Medical College, BGalkot, India

10.1136/archdischild-2020-rcpch.474

Background Perinatal Asphyxia is a multi-system disorder and its effects are not limited to central Nervous System. Cardiac impairment occurs in about 24-60% of neonates with asphyxia. Myocardial dysfunction secondary to severe birth asphyxia will lead to loss of cerebral auto-regulation with subsequent severe encephalopathy. This study was done to evaluate the usefulness of cardiac enzymes test in diagnosing myocardial injury in perinatal asphyxia as well as prognostic indicator of perinatal asphyxia.

Methodology A hospital based prospective analytical study performed in 100 asphyxiated term neonates admitted in our NICU from January 2017 to June 2018. Cardiac enzymes; CKMB and cardiac troponin-I were evaluated for sensitivity, specificity and diagnostic accuracy in comparison with clinical diagnosis of myocardial injury and were correlated with results from ECG, ECHO, duration of inotrope, severity of shock and outcome.

Results In our study among 100 term asphyxiated neonates, 79 neonates had clinical evidence of myocardial injury. We had larger number of neonates (41%) with stage 3 HIE while 35% were stage 1 HIE and 24% were stage 2 HIE. The ROC curve for cardiac dysfunction showed that the value of CKMB for prediction of cardiac dysfunction was 42 IU/L (sensitivity of 79.5%, specificity of 93.3%, diagnostic accuracy 87.3%). Similarly, the value of cardiac troponin I for prediction of cardiac dysfunction was 0.2 ng/ml (sensitivity 90.6%, specificity 96.7%, diagnostic accuracy 97%). The cut off CKMB value for prediction of mortality in our study is 91.1 IU/L (sensitivity of 90.0%, specificity of 83.8% and diagnostic accuracy 88%) and for cardiac troponin I, it was more than 0.96 ng/ml (sensitivity of 93.3%, specificity of 87.8%, diagnostic accuracy 93.2%). Also the value of CKMB and troponin I had strong statistical significance with severity of HIE (p<0.001), severity of shock (p<0.001) and duration of inotrope support (p<0.0001).

Conclusion Cardiac enzymes are valuable tool in resource limited settings for early detection of myocardial injury due to perinatal asphyxia. The early detection and prompt treatment of condition will help in improving prognosis of these asphyxiated newborns.