Neurological Impairment (SNI) in the literature. We aimed to develop an international, consensus-based, multi-disciplinary definition of this term.

Methods The Delphi process was chosen to achieve consensus on the definition of SNI. We collaborated with experts in 5 countries (Ireland, the UK, the USA, Canada and Australia) to disseminate an invitation to other colleagues in neurodisability in their own region. We specified that a multi-disciplinary panel was required. Those who wished to participate were asked to email us, as facilitators of the process, to confirm their desire to take part. Participants were asked to further disseminate the invitation to other colleagues, thus employing a snow-ball effect in the recruitment of expert panellists.

The Delphi process proceeded over 3 rounds. Round 1 used free-text responses where panellists provided insight into their understanding of the term SNI. Responses were used to generate themes. In rounds 2 and 3 panellists were asked to rate their agreement with these themes in the definition of SNI. In the process of round 3 participants were provided with feedback on the previous round, including anonymous information on how the other panellists had voted as well as selected written feedback to provide an opportunity to consider other points of view. Items were brought forward to the final definition if they received more than 70% agreement, in line with accepted Delphi methodology. After round 3, a working definition of SNI was created. Further refinements were made based on comments from parent representatives and experts at an international conference.

Results Thirty-four multi-disciplinary panellists participated in round 1 of the process falling to 31 in round 3, a 9% dropout rate. Fifteen themes were generated from responses in round 1. Seven items were brought forward for inclusion in the final definition.

Conclusion We have created an international, multi-disciplinary, consensus-based definition of SNI. This definition can be used to improve consistency in reporting of research, ultimately leading to improved outcomes for this unique and vulnerable cohort of children.

A rapid neurocognitive decline ensued, characterized by fluctuating consciousness, visual impairment, aphasia and the emergence of dystonia, rendering him non-ambulant within weeks of hospital admission. The EEG evolved with a diffusely slow background with no periodic sharp waves, except occasionally in the temporal regions. MRI brain showed asymmetrical T2-weighted signal change in sub-cortical and deep white matter. Serial imaging demonstrated increasing widespread signal abnormality. SSPE was confirmed by CSF measles PCR. His EEG at ten weeks after presentation progressed to typical periodic sharp and slow wave complexes, occurring every 6–7 seconds.

The clinical course and EEG add weight to the growing body of evidence of SSPE occurring in a younger than expected cohort across the UK and Europe. SSPE is a neurodegenerative disorder where early illness is known to have a higher association with development of measles related sequelae. At a time when vaccination uptake is at an all time low, increased awareness of the burden of measles is crucial to facilitate improved health promotion and vaccination uptake worldwide. SSPE should be considered in any child presenting with regression and seizures even if the EEG and neuroimaging are not initially wholly supportive.