high risk for AKI to enable preventative measures to be implemented. This retrospective audit aimed to describe the epidemiology of AKI at a tertiary paediatric centre in order to prioritise interventions. **Methods** All inpatients with an AKI stage 2 or 3 alert between 1st March and 31st May 2017 were included in this audit. The electronic healthcare record for each patient was accessed and data extracted. **Results** Over a 3 month period there were 354 AKI stage 2 or 3 alerts accounting for 125 AKI episodes affecting a total of 101 patients. Males (53.5%) and females (46.5%) were evenly represented. Children aged between 1 month and 2 years were most frequently affected (37%), 22% of patients were under the care of cardiology, 12% under general paediatrics, and 11% under respiratory. The majority of episodes lasted only 1 day, with 55 episodes (44%) lasting for 2 or more days. 51% of AKI episodes were associated with exposure to at least one nephrotoxic medication during, or in the 7 days preceding, the event. The most common medications were furosemide (14%), piperacillin with tazobactam (14%) and ibuprofen (11%). Overall the cause of AKI was infrequently documented (37%) of episodes), however, where documented, the leading causes were cardiac surgery (28%) and nephrotoxic medications (20%). **Conclusion** Cardiac surgery represents a significant risk factor for the development of AKI in children. In addition, over half of children who developed AKI were exposed to nephrotoxic medications, and this was the second most common identified cause. Future AKI management strategies should focus on delivering improvements for these groups of patients to reduce the impact of AKI.

G328(P) ABSTRACT WITHDRAWN

INCIDENCE OF AMPHOTERICIN-INDUCED ACUTE KIDNEY INJURY IN A PAEDIATRIC POPULATION: A SYSTEMATIC REVIEW

1D Mistry, 2,3 LN i , 3,4 SJ McWilliam. 1Medical School, University of Liverpool, Liverpool, UK; 2Department of Paediatric Nephrology, Alder Hey Children’s NHS FT, Liverpool, UK; 3Department of Women’s and Children’s Health, University of Liverpool, Liverpool, UK; 4MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK

Aims The aim of this project was to perform a systematic literature review to determine the incidence of Amphotericin-induced Acute Kidney Injury (AKI) in the paediatric population. **Methods** A systematic review was performed to obtain articles until October 2018 using Scopus and Medline, with additional articles obtained using the bibliographies from selected studies. Studies were chosen if they included an intervention of Amphotericin with monitoring of renal function and a declaration of how AKI would be defined. All types of studies were considered and those retrievable in full text and English were included. **Results** Of sixty-three articles identified, seventeen were available in full text. A further ten studies were rejected due to not mentioning dose, duration or outcomes. The remaining seven studies totalled 279 patients aging between 0–15 years. The ratio of boys to girls was 50:50 (demographic data reported in only 4 of 7 studies). Of the seven studies none were randomised controlled trials. Visceral Leishmaniasis was the indication for treatment with liposomal Amphotericin in 6 of the 7 studies. The dose of Amphotericin ranged from 15–30 mg/kg and a duration of 2 – 21 days. The total incidence of AKI was found to be 1%, with the pRIFLE criteria being the most commonly used method of defining AKI, however many of the studies did not explicitly define AKI in their outcome criteria, leading to low identification rates. The optimal dose range is 3–4 mg/kg for a regime of 5-day treatment followed by a further dose on day 10. Additional outcomes included risk factors for AKI with underlying infection being the most consistent. **Conclusion** This systematic review found an incidence of Amphotericin-induced AKI in a paediatric population of 1%. Comparatively, adults show an incidence rate of around 50%, suggesting large differences between the two cohorts. There were limitations to this study, mainly due to the lack of standardisation in the definition of drug-induced AKI in children across the studies. Improved reporting of Amphotericin-induced AKI, using standardised AKI definitions, is required to confirm the true incidence in children.

G329(P)

A SYSTEMATIC REVIEW OF THE RISK FACTORS ASSOCIATED WITH VANCOMYCIN-INDUCED ACUTE KIDNEY INJURY IN CHILDREN

1C Williams, 2,3 LN i , 3,4 SJ McWilliam. 1Medical School, University of Liverpool, Liverpool, UK; 2Department of Paediatric Nephrology, Alder Hey Children’s NHS FT, Liverpool, UK; 3Department of Women’s and Children’s Health, University of Liverpool, Liverpool, UK; 4MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK

Aims Vancomycin has been suggested to contribute to acute kidney injury in adults, however few studies have addressed its role in the paediatric population. The primary aim of this paper is to review the evidence surrounding the risk factors involved in the development of paediatric acute kidney injury as a result of vancomycin administration. **Methods** A systematic search was performed in November 2018 on PubMed, Web of Science and Scopus using ((AKI OR acute kidney injury OR nephrotoxic* OR OR renal insufficiency OR kidney damage) AND (vancomycin OR vanco*) AND (p*ediatric OR child* OR infant* OR child* OR adolescent* OR neonat*)). Eligible studies were meta-analyses, clinical trials, observational studies or case series of vancomycin use in a paediatric population (0–18 years) reporting outcomes of nephrotoxicity. **Results** Of 1021 records identified, sixteen retrospective cohort studies were eligible for inclusion in the review, totalling 10,575 patients with an overall vancomycin-induced acute kidney injury (v-AKI) incidence of 13.3%. Thirteen studies considered the effect of co-administration of vancomycin with other nephrotoxins. Use of concomitant nephrotoxic medications was associated with a significantly increased risk of AKI. Co-administration of aminoglycosides, piperacillin-tazobactam, vasopressors, furosemide (and other loop diuretics), ACE inhibitors and NSAIDs were all found to be significantly associated with increased risk of AKI in at least one study. However, there was significant variation between studies. Six