Methods A simple sticker was designed and attached to continuous sheets for medical notes which had a checklist of monitoring requirements and a section for fluid balance. Additionally, 2 posters were produced; one aimed at medical staff for documenting a fluid management plan and one aimed at the nursing staff with the monitoring requirements. These posters were displayed on the paediatric surgical ward.

Results A total of 22 patients who were prescribed IV fluids were identified for a baseline measurement, an equal number of patients were compared after the intervention. Neonates and children receiving total parenteral nutrition were excluded from the data collection. There were 41% of daily fluid management plans completed pre intervention and post intervention there were 56% completed; showing a 15% increase in completion. As regards the monitoring indications; there were increases for nursing fluid balance completed from 19% to 46%, blood glucose taken and recorded from 64% to 83% and the daily weight documented from 10% to 49%.

Conclusions This short QI project shows that implementation of an intervention did improve outcomes across all indications investigated. The results are not as dramatic as first hoped, but this is largely due to the short time scale of 4 weeks to introduce our change and it coincided with the change-over month of junior medical staff. With further education and champions within the medical and nursing teams; further improvement is very much possible, with the main aim in reducing risk and improving patient safety.

REFERENCES

P14 REDUCING MEDICATION ERRORS USING PRESCRIBING NUDBGES: INTRAVENOUS ACICLOVIR ON PAEDIATRIC INTENSIVE CARE

Jenny Gray1, Nicholas Jones2, Olivia Fuller3, Andrew Schia.1 Bristol Children’s Hospital; 2University Hospitals Bristol; 3University of Bath

Aim This Quality Improvement project is the second phase of a long term project to improve the quality of prescribing on the paediatric intensive care unit (PICU). Small adjustments are made to the electronic prescribing (EP) system, known as ‘nudges’, with the aim of improving the quality of prescribing in terms of error rate or user experience.1 2

Intravenous aciclovir is prescribed to most patients admitted to the PICU with suspected meningitis/encephalitis. There is a complicated dosing schedule where the prescriber must decide whether to use body surface area (BSA) or weight to calculate the required dose. Underdosing risks subtherapeutic treatment of a viral encephalitis and overdosing risks acute kidney injury. Within our EP system, dosing by weight can be automated, but dosing by BSA cannot.

A project in 2018 used a ‘nudge’ to alter the order of prescribing options in the drop down menu on the EP system. This reduced the error rate from 26% to 17% by reducing the likelihood of picking the wrong indication for aciclovir.3 However, a re-audit in October to December 2018 found the error rate had crept back up to 32%. Prescribing on the EP system is a multi-step process. Prescribers had to pick ‘aciclovir’ to choose the weight based dose or ‘aciclovir injection 3 month-11 yr’ to choose the BSA based dosing. When ‘aciclovir’ was picked, this removed the body surface area dosing option from the prescriber’s screen and led them in the direction of an incorrect dose.

Method The intervention for this project was to amalgamate all weight and BSA dosing options for aciclovir within the EP system, and then order them by age so that the prescriber could see all options simultaneously. This change was designed and implemented by our electronic prescribing support pharmacist in April 2019. Pre and post change prescriptions were audited by pharmacy undergraduate students for accuracy using data downloaded from the EP system.

Results The error rate post change was 8% (pre change 32%). The remaining errors reflect transcribing of an incorrect dose initiated outside of the PICU from a referring ward or hospital.

Conclusion This project shows that small, ‘smart’ changes within EP configuration can improve the quality of prescribing.

Future work involves working with the software company to incorporate the ability to automatically calculate the dose based on BSA, further reducing the need for manual calculations. This project would not have been possible without the skills and knowledge of our electronic prescribing support pharmacy team.

REFERENCES

P15 USING PRESCRIBING NUDBGES TO REDUCE MEDICATION ERRORS: PARACETAMOL ON PAEDIATRIC INTENSIVE CARE

Jenny Gray1, 2, Nicole Aubrey3, Emma Hipkin2, Nicholas Jones1. 1Bristol Children’s Hospital; 2University of Bath; 3University Hospitals Bristol

Aim Paracetamol is widely available and its safety profile is relatively good. However, the risk associated with a paracetamol overdose is much greater in a neonate than that associated with an adult.

In 2018, 8% of paediatric medication errors related to the use of paracetamol, including three 10x overdoses. These irregular but serious risks are difficult to manage over time due to degradation of heightened awareness. The aim of this project was to improve the prescribing quality of IV paracetamol on PICU and prevent recurrence of a 10-fold overdose by the implementation of multi-level changes.

Method Electronic prescribing (EP) has been in use on our unit since 2016. Small changes (prescribing nudges) in the configuration of the EP system can be used to improve prescribing quality. Forced functions, automation and standardisation have been found to be more effective in this than more traditional education and training methods.1 2

The changes implemented in January 2019 were as follows: