lack of adequate Tinzaparin monitoring throughout prophylactic dosing, thus highlighting an opportunity to educate and communicate the guideline to health care professionals within this field of practice to encourage effective treatment and prophylaxis of thrombosis. Raising awareness for the need of adequate documentation within patient notes to explain omitted dosing would also guide healthcare professionals involved in patient care to make informed decisions and avoid unnecessary alterations to treatment plans.

REFERENCES

P12 EVALUATION OF ENERGY AND PROTEIN INTAKE IN NEONATES USING SCAMP REGIMEN
1Sian Gaze*, 2Chidubem Okoye, 2Graham Davies. 1Evelina London Children’s Hospital; 2King’s College University London

Aims Our neonatal unit recently updated their parenteral and enteral feeding guideline and started using a standardised parenteral nutrition regimen (SCAMP).1

The aim of this study was to observe the amount of energy and protein that was being delivered to patients using the SCAMP regimen and to evaluate whether it met the recommendations made by ESPGHAN in terms of energy and protein intake.2

Methods A data collection form was designed using Excel. Patients were identified using BadgerNet digital software. All required patient parameters were recorded from Badgernet. Data was anonymised and the Excel spreadsheet was password protected. A single investigator collected data over a 28 day period in October/November 2018. Only patients on the SCAMP regimen were included in the study. Patient data was collected from first day of SCAMP regimen until baby was discharged, or ceased parenteral nutrition.

Results
• 22 patients were identified for inclusion in the study. Of these, 17/22 (77%) weighed < 1 kg.
• Majority of babies (20/22; 91%) were aged < 31 weeks corrected gestational age when SCAMP was initiated.
• Majority of babies were on the SCAMP regimen due to prematurity; 4/22 (18%) had a surgical condition, that required PN to be initiated.
• 1 patient had a complex congenital cardiac anomaly.
• Average length of time babies remained on SCAMP was 19 days (range 5–28 days).
• Majority of babies were enterally fed using breastmilk. Some babies were on alternative formula feeds.
• Mean amount of energy delivered to each patient was calculated. The amount of energy delivered increased daily over the first week, and by day 10 of life had reached the target range (110–135 kcal/kg/day). Recommended energy intake was then maintained for the rest of the 28–day study period.
• Target amount of protein intake varied for babies weighing <1 kg and >1 kg. For babies <1 kg, a gradual increase occurred over the first 5 days of life. Recommended protein intake was met between days 5–10 of life, then there was a gradual decline.
• For babies weighing between 1–1.8 kg, the recommended protein intake was achieved within 24–48 hours. Higher than recommended amounts of protein were being delivered between days 5–10 of life. Mean protein intake remained within ESPGHAN recommendations (3.5–4 g/kg/day) during weeks 3 and 4 of life.

The results are encouraging and demonstrate that neonates are managing to achieve the recommended amounts of energy intake from day 10 of life.

Limitations This study focused solely on energy and protein intake – it did not include observations of growth. Future studies should consider looking at more patient-focused outcomes.

Conclusions SCAMP regimen is delivering the recommended amounts of energy for babies on the neonatal unit – target levels are achieved by day 10 of life.

• Future work should focus on observing growth in babies on SCAMP
• Earlier introduction of breast–milk fortifier may be helpful to increase protein intake in babies < 1 kg – potential benefits need to be evaluated against risk of adverse effects.

REFERENCES

P13 OPTIMISING PAEDIATRIC INTRAVENOUS FLUID MANAGEMENT PLANS: A QUALITY IMPROVEMENT PROJECT
1Jenny Gray*, 2Susie Gage. 1University Hospitals Bristol; 2Bristol Children’s Hospital

Introduction Intravenous (IV) maintenance fluids are often prescribed post-surgery when enteral routes are contraindicated. Serious consequences have been documented when poor fluid management has occurred, as highlighted in the National Patient Safety Alert (NPSA) 22; reducing the risk of hypoponatraemia; when administering IV fluids to children.1 In response to this, the National Institute for Health and Care Excellence (NICE) published their guidance in December 2015 regarding IV fluids in children.2 Based on NICE recommendations, a pan hospital fluid guidance was produced. Within the NICE and hospital’s own guideline it states that there should be a daily fluid management plan documented. It has been well recognised that this daily fluid management plan was not routinely been completed; hence showing non-adherence to our hospital policy and NICE recommendations.

Aims Primary aim was to improve the documentation of the daily fluid management plan; aimed at the medical staff and the secondary aim was to improve the monitoring requirements of IV fluids and documentation of these; largely aimed at the nursing staff.