ECHOCARDIOGRAPHIC FOLLOW-UP OF CHILDREN WITH SUBAORTIC STENOSIS

1Betül Çınar1, Sezer Ugan Atik 1, Ayşe Güler Erögülü, Yeşil Saltık, İstanbul University Cerrahpaşa Medical Faculty, Department of Pediatrics, Istanbul, Turkey; 2Istanbul University Cerrahpaşa Medical Faculty, Department of Pediatric Cardiology, Istanbul, Turkey

Introduction Subaortic stenosis (SAS) accounts for 8–30% of patients with congenital left ventricular outflow tract obstructions. Although progressive SAS occurs in many patients, the exact etiology and factors contributing to progression remains unknown. In this study, we evaluated the natural course of SAS, associated aortic regurgitation (AR), the factors affecting the progression of SAS and AR and the outcomes of surgery during the long-term follow-up with echocardiography.

Materials and Methods The study included 105 patients who were evaluated and followed with echocardiography at our institution between 1990 and 2017 with SAS, consisting of either a thin ridge or a thicker but discrete obstruction with a muscular base. Patients with incomplete medical records, abnormal ventricular function, and lesions other than AR were excluded. The last examination prior to any surgical intervention provided our final measurements. The level of narrowing of the LVOT, the distance between right coronary cusp and ridge and the anulus of the aortic valve were determined with two-dimensional echocardiography. Continuous-wave Doppler was used through an apical five-chamber view to record the maximum peak and mean systolic instantaneous gradient across the supravalvular narrowing. A multivariate analysis with Cox proportional hazards modeling was performed to adjust for the different distributions of variables between groups. The enter method was used in logistic regression analysis.

Results Among 105 patients (median, 5 years at initial echocardiography), 64% were male and 36% were female. The patients were followed median 6.6 years. Aortic valve morphology was tricuspid in 95.2% and bicuspid in 4.8%. The median distance of discrete membran from the right coronary cusp was 6.4 mm. The degree of SAS staid the same in 60%, progressed in 29% and 11% underwent surgery after initial echocardiography. AR did not develope in 21 (20%), not deteriorate in 41 (39%) and progressed in 43 (41%) patients. Surgery was performed in 38 (63.8%) patients. 6 (5.7%) patients underwent reoperation.

Conclusion We recommend careful and frequent evaluation for patients with moderate stenosis because surgery may be needed depending on the severity of stenosis and AR. Postoperatively, follow-up is required.

Background Noonan syndrome - is rare autosomal dominant disorder from RASopathies group, characterized by facial dysmorphism, short stature, hypertrophic cardiomyopathy, congenital heart defects.

Patients and Methods We have examined 47 patients with hypertrophic cardiomyopathy aged 1 to 17 years. Target areas of the exome were investigated by NGS. Bioinformatic analysis was carried out using the Alamut software. Validation of the identified variants was carried out by the Sanger method.

Results The diagnosis was confirmed in 13 patients with hypertrophic cardiomyopathy and cardiologic abnormalities. Short stature and facial features have all our patients. Congenital heart defect, including pulmonic stenosis diagnosed in 6 cases.

RAF1 mutations were identified in 7 patients, PTPN11 - in 3 patients, SOS1 - in 1 patient, SOS 2 - in 1 patient, and RIT1 - in 1 patient. Most frequent RAF1 mutation was c.770C>T, p.S257L. (5 from 7 cases). Girl with mutation in RIT1 was with phenotype Noonan syndrome, but also have left ventricular noncompaction and skin cafe-au-lait spots.

Conclusion Noonan syndrome was diagnosed in 28% hypertrophic cardiomyopathy patients.

Mutation c.770C>T, p.S257L in RAF1 gen is most common in hypertrophic cardiomyopathy patients with Noonan syndrome.