arginosuccinate 1014 μmol/L, consistent with a diagnosis of arginosuccinic aciduria, subsequently confirmed on molecular genetic testing. She was discharged on oral sodium phenylbutyrate, sodium benzoate and L-arginine, with an appropriate dietary plan. To date, there is no evidence of neurological sequelae, likely attributable to prompt diagnosis and treatment.

Conclusion Arginosuccinic aciduria is a rare, autosomal recessive disorder of urea cycle metabolism caused by deficiency of arginosuccinic lyase. Clinical and biochemical manifestations depend on the severity of enzyme deficiency. In the neonatal variant, it typically presents with hyperammonaemia, encephalopathy and respiratory acidosis. This case highlights the importance of considering inborn errors of metabolism in the assessment of a sick neonate.

Discussion Serum ammonia levels should be measured in every patient with unexplained altered mental status. Primary (urea cycle disorders) and secondary hyperammonemia alike are considered emergency situations therefore, treatment should never be delayed by diagnostic tests. On the other hand, both treatment and exacerbation prevention have an impact in prognosis regardless of age.

P432 ENCEPHALOPATHY IN TEENAGERS – A CHALLENGING ETIOLOGIC DIAGNOSIS

1Tiago Magalhaes*, 2Teresa Campos, 3Esmeralda Rodrigues, 4Cárlia Vasconcelos, 1Manuel Fontoura, 3Laura Vilarinho, 2Elisa Leão Teles, 1Centro Materno Pediátrico – Centro Hospitalar São João, Porto, Portugal; 2Reference Center for Inherited Metabolic Disorders – Centro Hospitalar São João, Porto, Portugal; 3National Health Institute – Dr. Ricardo Jorge, Porto, Portugal

Introduction Inherited metabolic disorders due to intoxication provoked by highly toxic endogenous compounds are among the causes of encephalopathy. That is the case of urea cycle disorders in which ammonia’s great neurotoxicity can frequently be lethal. Ornithine Transcarbamylase (OTC) Deficiency is an X-link genetic disorder and the most common disorder of the urea cycle. Presentation in heterozygote females is variable and can go from being asymptomatic to having mild chronic symptoms with severe exacerbations in any age.

Case report A seven-day-old girl admitted to the pediatric emergency department for decreased activity and lethargy. She was born after normal pregnancy at 40 weeks of gestation with 2300 gr birth weight and hospitalized for 2 days. Her parents were first degree cousins and the family history was unremarkable for an inherited metabolic disease, however the patient’s mother had to undergo a cesarean section due to arrest of labor. A reference center confirmed OTC deficiency in the patient. The patient was discharged on oral sodium phenylbutyrate, sodium benzoate, and L-arginine, with an appropriate dietary plan. To date, there is no evidence of neurological sequelae, likely attributable to prompt diagnosis and treatment.

Conclusion Argosuccinic aciduria is a rare, autosomal recessive disorder of urea cycle metabolism caused by deficiency of arginosuccinic lyase. Clinical and biochemical manifestations depend on the severity of enzyme deficiency. In the neonatal variant, it typically presents with hyperammonaemia, encephalopathy and respiratory acidosis. This case highlights the importance of considering inborn errors of metabolism in the assessment of a sick neonate.

P433 AN INTERESTING CASE DIAGNOSED AS BOTH PHENYLKETONURIA AND MATERNAL PHENYLKETONURIA

Sibel Öz*, Deniz Kor, Sebile Kılavuz, Fatma Derya Bulut, Berna Şeker Yılmaz, Fadli Demir, Tuğçe Özakçağlı Kartal, Gözde Atasever Yıldırım, Halise Neslihan Önenli Mungan. Cukurova University, Adana, Turkey

Introduction Phenylketonuria (PKU) is the most common and autosomal recessively inherited metabolic disease due to the deficiency of phenylalanine hydroxylase (PAH). Elevated levels of phenylalanine are not only toxic for the children but also teratogenic for the fetus. Clinical findings of maternal phenylketonuria (MPKU) are intrauterine growth retardation, microcephaly, significant developmental delay, congenital cardiac anomalies, and some other structural defects. Poorly diet control and high levels of blood phenylalanine causes to this severe but preventable clinical syndrome.

Case report A seven-year-old girl admitted to the pediatric metabolism clinic with a suspicion of PKU after newborn screening program. She was born at 40 weeks of gestation with a 2300 gr birth weight and hospitalized for 2 days. Her parents were first degree cousins and the family history was unremarkable for an inherited metabolic disease, however the mother had two miscarriages. Physical examination revealed microcephaly, mild facial dysmorphism, and cardiac murmur in addition to intrauterine growth retardation. Her blood phenylalanine level was 1140 μmol/dL and she was diagnosed as moderate phenylketonuria. As a ventricular septal defect was detected with echocardiography and the mother was born before the national newborn screening program was available, the mother’s blood Phe concentration was measured. Surprisingly her blood Phe level was 1614 μmol/dL. The mother was a 25 years old woman be able to graduate from primary school and complained about only concentration problems. She had also blond hair and blue eyes on physical examination.

Conclusion Maternal phenylketonuria is a preventable public health problem which causes undesirable results like mental retardation and cardiac defects. Although maternal phenylketonuria is not completely coped with, after newborn screening program the incidence is decreased. A strict Phe restricted diet beginning before the pregnancy together with frequent controls of blood Phe levels are essential for management. Here, we report this case, as she was diagnosed both phenylketonuria and maternal phenylketonuria and in order to emphasize thinking MPKU in the presence of microcephaly, developmental delay, and cardiac defects.
Maternal phenylketonuria, newborn screening program, developmental delay.

TYROSINEMIA TYPE 1: A CASE REPORT

1,2Mahmoud Rashad*, 1 Carmen Naaser. 1King Fahd Hospital, Al Baha, Saudi Arabia; 2Al Azhar University, Cairo, Egypt

Introduction Tyrosinemia type 1 is an AR inherited metabolic disorder attributed to deficiency of Fumarylacetoacetatehydrolase, which is a terminal enzyme in the metabolism of tyrosine. The gene for this enzyme has been mapped to the long arm of chromosome 15. Its prevalence has been reported as 1: 100,000. The patients with tyrosinemia expire in the early years of their lives. There is a markedly increased risk of hepatotumoral carcinoma among the survivors.

Case report An Saudi 8-month-old male infant presented with complaints of abdominal distension, fever, jaundice, melena and disturbed level of consciousness for 3 days prior to admission to PICU (in King Fahd Hospital, Al-Baha). He was the 1stchild of 1st degree consanguineous parents.

His motor and mental development were delayed. One day after admission, the infant developed repeated daily attacks of neurological crises in bouts of irritability, crying with increased tone and deep tendon reflexes in the lower limbs.

On physical examination patient looked sick, pale, jaundiced and drowsy. He had rachitic signs. There was mild lower limb edema. Fine crackles were audible bilaterally on the chest. Abdomen was distended. Liver was palpable 5 cm below right costal margin. Spleen was just palpable below left costal margin. There was positive shifting dullness, with scrotal edema. The infant was drowsy, with poor vision, and hypertonic, with exaggerated deep tendon reflexes.

Hematological screening CBC showed anemia and thrombocytopenia. CRP was positive and urine analysis showed albumin & RBCs.

Biochemical examination showed that BUN: 12.5 mmol/L, creatinine 27 µmol/L, glucose: 2.9 mmol/L, Ca: 2.2 mmol/L, phosphorus: 0.64 mmol/L, Mg: 0.57 mmol/L, albumin: 28 µmol/L, T. bilirubin: 35 µmol/L, direct bilirubin: 17 µmol/L, alkaline phosphatase 426U/L, AST: 65U/L, gamma GT: 130U/L, LDH: 566U/L, ammonia: 121 µmol/L. Coagulation screening was abnormal. Blood Alpha fetoprotein was very high, ABG examination showed compensated metabolic acidosis.

Tracheal aspirate C/S showed MRSA The left wrist graphy revealed hepatosplenomegaly with moderate ascites. Liver examination showed multiple hypechoic masses. Abdominal CT showed hepatomegaly with multiple hyperdense masses, splenomegaly and ascites. CT brain showed cerebral atrophy.

Blood phenylalanine, tyrosine and methionine levels were all high. Urine examination showed increased levels of organic acids.

So, the infant was diagnosed as tyrosinemia type I and was prescribed a phenylalanine and tyrosine restricted diet (special formula milk) and received treatment for Vit. D resistant rickets. Following treatment, patient showed much clinical and laboratory improvement, but not to the safe level to conduct liver biopsy.