of symptoms was 14 days (range 0–120) with median duration from symptom onset to medical advice was 3.5 days (range 0–28). Same-day diagnosis occurred in 84%. Nine patients (36%) and all with delayed diagnosis presented in Diabetic Ketoacidosis (DKA). Sixty percent had visited their GP at least once in the preceding year. Pre-diagnosis, Parents’ main sources of healthcare advice were: their GP (44%); Friend/relatives (20%); Pharmacist (16%); Pharmacist and GP (8%); or relative and GP (8%). Sixty six percent (21/25) had not used the web for Health Information. Parents’ reported the following sources as most likely to be influential prior to diagnosis: TV adverts; Facebook; Local Radio Adverts/GP posters; GP Videos/School Poster; GP Leaflets; Twitter; Adverts in National or Local Papers.

Conclusions There is a wide range of symptom duration in T1D and time to seeking medical advice. The main sources of healthcare advice for parents are GP’s, pharmacists and relatives. Surprisingly the majority did not access the internet for health information prior to diabetes diagnosis. To promote early diagnosis of T1D wide community involvement is required using targeted health information sources to prompt early help seeking and diabetes prevention.

P232 QUALITY OF LIFE DIMENSIONS IN CHILDREN WITH TYPE 1 DIABETES MELLITUS (T1DM)

Madalene Khalil, Niall Dalton*, Julie Evers, Orla Neylon, Paul Scully, Clodagh O’Gorman. University Hospital Limerick, Limerick, Ireland

10.1136/archdischild-2019-epa.582

Aims T1DM is one of the most prevalent chronic health conditions in youth with a rising incidence. Management regimes are often complex and demanding, being a source of significant stress for children and their families. The aim of this current study was to examine quality of life dimensions amongst young people with T1DM.

Methods The study was a regional level observational study within the University Hospital Limerick T1DM outpatient clinic, focusing on Quality of life dimensions measured using KIDSSCREEN generic quality of life measures, a project funded by the European Commission. Questionnaires were completed between June and August 2018 and analysed using SPSS statistical software.

Results 55 children completed the survey. 55% of respondents were female and age range was from 5 – 17 years, with all respondents being diagnosed a minimum of 2 years previously. 92% of respondents stated that their general level of health was good, very good or excellent, with two-thirds being either very or extremely fit and well. 90% of respondents stated that life has been either very or extremely enjoyable with 92% feeling very or extremely loved. Over 80% of respondents were very or extremely happy at school with 5% stated that they felt quite often bullied by other girls and boys.

Conclusion The results from this study show that despite the diagnosis and implications regarding T1DM, the children interviewed showed a high level of positivity and enthusiasm regarding home and school life as well as undertaking activities.

P233 ONE YEAR POST-INTRODUCTION OF CENTRALLY-FUNDED FLASH GLUCOSE MONITORING IN PAEDIATRIC TYPE 1 DIABETES: A REGIONAL CENTRE’S EXPERIENCE

Caoimhe Costigan*, Mary Norris, Orla McNemey, Clodagh O’Gorman, Orla Neylon. University Hospital Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland

10.1136/archdischild-2019-epa.583

Background The FreeStyle Libre Flash Glucose Monitoring system (FGMS) continuously measures glucose concentration in the interstitial fluid. It was approved under the Community Drug Scheme in Ireland from 1st April 2018; making this technology available to all children ≥4 years with type 1 diabetes using intensive insulin regimens.

Aim To assess the effect of FGMS on glycaemic control and to explore engagement of patients with the technology; looking at frequency of self-monitoring and of uploads to the web-based clinic interface LibreView.

Methods This was a single centre observational study. All patients receiving FGMS were identified. Hba1c at quarterly intervals from 3 months prior to 6 months post introduction of the FGMS were extracted. We assessed level of engagement by reviewing the frequency of data uploading to the LibreView system. We also quantified frequency of self-monitoring overtime via ‘flashes per day’.

Results Of 215 active patients, 108 patients (50%) commenced using FGMS during the study; 58 (54%) male and 50 (46%) female. Thirty two (30%) were using continuous subcutaneous insulin infusion (CSII) and 76 (70%) injectable regimes. Mean age was 11.6±3.9 years (4.7–18.5 years). Mean duration of diabetes was 5.1±3.7 years. The mean Hba1c in the cohort improved across the study period from 8.0±1.1% at 3 months prior, to 7.7±0.9% at 6 months post-initiation.

Technology engagement was assessed in 93 patients utilising the FGMS >1 month. Only 25 (26%) patients uploaded >1 within the first 3 months, and only 9 (17%) of eligible patients in the second 3 month period; the frequency of uploading was hugely variable. Mean flashes per day was 9.9 (0–29) in the first and 9.7(0–38) in the second 3 month period.

Conclusion Improvement was demonstrated in the mean Hba1c overtime, in keeping with the limited available evidence in other paediatric cohorts (1). Low rates of engagement with uploading data were observed, with decreasing engagement over time. This is a potential area to target improvement as having an ambulatory glucose profile to review remotely could aid in pattern recognition and insulin dose adjustment, thus impacting glycaemic control. Having improved engagement with the LibreView would also allow analysis of time in target range and glucose variability, which are recognised as important targets for users of continuous glucose monitoring systems.

REFERENCE

1. Campbell FM, Murphy NP, Stewart C, Bieser T, Kordonouri O. Outcomes of using flash glucose monitoring technology children young people with type 1 diabetes arm study. *Pediatr Diabetes*