known that sleep disturbances cause behavioral, affective and cognitive mental health problems. In this study we investigate the effect of structured physical activity on sleep and mental health in severe autistic children.

Methods Thirty-six children who have severe autistic disorder according to Children’s Autism Rating Scale participated in the study. Structured physical exercise applied 6 months one by one all these children. Before beginning the physical exercise programme and after the programme we evaluated autistic children with Aberrant Behavior Checklist(ABC), The Children’s Sleep Habits Questionnaire(CSHQ).SPSS 18.0 was used for statistical analyses.

Results The children with ASD were between 7–17 years old and the mean age was 12.5±2.1 years old. There was significant difference in total scores of ABC before and after structured physical activity(p=0.05, z=-1.918).The mean scores of Hyperactivity-Non compliance subscale was declined significantly after physical activity(p=0.045, z=-2.000).

The rate of clinically significant sleep problems was 80.6% before activity and the rate was 66.7% after activity. There were statistically significant differences in total CSHQ scores before and after structured physical activity (p=0.01, z=-3.470). The mean scores of Bedtime Resistance(p=0.01 z=-3.128) and parasomnias subscale(p=0.29, z=-2.187) were declined statistically significant after physical activity.

Discussion In this study the rate of sleep problems is very high about 80% among severe autistic children as similar to literature(Cortesi F et al,2010). We found that sleep resistance and parasomnias were declined after physical activity. Also the hyperactivity behaviors get better after activity.Tatsumi et al (2015) found associations between physical activity and the quality of sleep were different depending on when the PA occurred. High levels of morning and afternoon activity were associated with early sleep onset among ASD children. High-level morning and afternoon activity should be encouraged to improve the sleep quality of children with ASD.Identifying and treating sleep disorders may result not only in improved sleep, but also impact favorably on daytime behavior and family functioning(Cortesi F et al,2010).

Future studies are needed have larger groups and control subjects must be done to clarify the positive effect of activity on sleep and behavior.

GP214 INCREASED MARKER OF ENDOTHELIAL CELL DYSFUNCTION sVCAM-1 IN UMBILICAL CORD BLOOD IN NEONATES BORN TO OBSESES WOMEN

Valeria Novikova*, Dmitry Ivanov, Yuriy Petrenko, Aleksey Yakovlev, Olga Gurina, Olga Varlamova, Aleksey Blinov. St. Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation

Introduction Increased level of angiogenic and adhesion molecules released from adipose tissue in pregnant women with obesity may affect the process of angiogenesis, metabolic state and inflammatory potential in both mother and her offspring.

Objectives To determine the effect of maternal obesity on the level of sVCAM-1 and VEGF-A in mothers and their newborn babies.

Methods We conducted a prospective, observational study with the inclusion of 42 mothers and their newborn babies. Main group included 21 mothers with obesity and their newborn babies. Control group consisted of 22 women with normal body mass index (BMI) before and during pregnancies and their newborn babies. We analyzed serum concentrations of vascular cell adhesion molecule 1 (sVCAM-1) and vascular endothelial growth factor A (VEGF-A) in maternal cord blood and in venous blood of newborn babies in 2 days after birth. The normal level of sVCAM-1 for adults is 400.6–1340.8 ng/ml; VEGF-A (for adults) - 0–42.6 pg/ml. Data was analyzed using the statistical package Statistica 10.0 for Windows-10.

Results The level of markers of endothelial dysfunction in cord blood exceeded normal values in all examined women. Concentration of sVCAM-1 in maternal cord blood was significantly higher in women with obesity compared to women with normal BMI (4926.19±1158.63 ng/ml vs 3294.66±1338.23 ng/ml, p< 0.001). Concentration of VEGF-A in maternal cord blood in both groups (224.74±57.41 pg/ml and 197.29±180.44 pg/ml; p>0.05), concentration of sVCAM-1 in newborns serum in both groups (4019.32±1024.45 pg/ml and 4300.35±948.08 ng/ml, p>0.05) and concentration of VEGF-A in newborns serum in both groups (208.42±141.72 pg/ml and 170.53±152.64 pg/ml; p>0.05) had no significant differences. The level of sVCAM-1 in cord blood was higher than in newborns serum in main group (4926.19 ±1158.63 and 4019.32±1024.45, p<0.05), but lower than in the control group (3294.66 ±1338.23 vs 4300.35±948.08, p<0.05). We did not reveal any significant differences in level of VEGF-A in cord blood and in newborns serum in both groups.

Conclusions Pregnancy in obese women associated with chronic endothelial activation secondary to increased production of vascular cell adhesion molecule 1 (sVCAM-1). The level of markers of endothelial cell dysfunction in infants may be associated with a different course of the adaptation period. Pregestational or pregnancy associated disorders, can have a different impact on endothelial function in pregnant women. The dynamics of the endothelial dysfunction markers in umbilical cord blood and serum of infants requires additional study.
Food Diaries to evaluate dietary intake. Nutritional bloods to assess iron and Vitamin D status were taken.

Results Participants included nineteen children. Median age was 7.9 years (range 0.6–18.1 years). Majority were female (n=14, 74%). Median age at diagnosis was 2.5 weeks (range birth – 2.7 years). Growth Hormone treatment was in place for the majority (n=14, 74%) and commenced at a median age of 2.6 years. Of the reporting parents, 89% (n=17) were mothers with 37% (n=7) reporting to be homemakers. All children were living in 2 parent households. BMI was calculated for all children over 2 years (n=15). Using the BMI classification 20% (n=3) were underweight, 60% (n=9) were healthy weight, one patient was overweight and 13.3% (n=2) were obese. Body composition analysis was completed where appropriate (n=9), median% bodyfat was 26% and ranged from 10 - 40%. The majority reported early feeding issues, all of whom required admission to the special care baby unit with median length of stay of 7 days (IQR 14 days). Difficulties progressing with textures and difficulties achieving typical feeding milestones was reported in 7 cases (39%). Food seeking behaviours were present in 10 patients (55%) with a median age of onset of 3.7 years. Children achieved 41% - 112% of their estimated average requirement (EAR) for energy (median 82%, IQR 33). The macronutrient composition of the diet varied greatly. Insufficient micronutrient intake was reported for iron, calcium and vitamin D. Nutritional bloods identified iron deficiency anaemia and vitamin D insufficiency in 2 patients. 58% (n=11) were taking self-prescribed supplements.

Conclusion Early feeding issues are common in PWS. The majority of our cohort were classified as having a healthy BMI achieved through significant restriction of energy intake. Suboptimal dietary intake of and deficiencies in key nutrients was noted. This study highlights the importance of adjusting energy intake to prevent overweight and obesity while ensuring adequate micronutrient intake to support optimal growth and development.

GP216 AN AUDIT OF MAINTENANCE INTRAVENOUS FLUID THERAPY IN THE PAEDIATRIC GENERAL WARDS AT MATER DEI HOSPITAL, MALTA

Thomas Calleja*, Jamie Grech, Nikita Talliani, Ray Parascondalo. Department of Child and Adolescent Health, Mater Dei Hospital, Tal-Qroqq, Malta

10.1136/ archdischild-2019-epa.275

Background Intravenous fluids are one of the most frequently prescribed drugs in hospital, and yet the practice continues to fall short of National Institute for Health and Care Excellence (NICE) guidelines. Paediatric patients are particularly vulnerable to complications of intravenous fluid therapy.

Aims, objectives and standards We aim to better prescribing practices of intravenous fluid prescription and fluid balance monitoring by staff in the paediatric wards, and to make recommendations and carry out interventions to improve areas where the adherence to NICE guideline ‘Intravenous fluid therapy in children and young people in hospital’, published in December 2015, is poor, as identified by the first cycle of the audit.

Methodology Data was collected prospectively from the notes of patients aged 0 to 16 years admitted in the two general paediatric wards at Mater Dei Hospital over a four month period. Patients started on intravenous maintenance fluids were included. Data included which fluid was prescribed, the indication, prescription practices, input and output charting and monitoring of serum electrolytes and glucose. Children with diabetic ketoacidosis and renal or hepatic disease were excluded.

Results A total of 65 patients were included. In only 5% of the treatment charts reviewed was the maintenance intravenous fluid prescribed, despite there being a specific section for fluid prescription. Actual weight was recorded on 89% of the drug charts. Estimated weight was documented in the remaining 11%. 81% of calculations of infusion rate on actual weight were performed correctly according to the Holliday-Segar formula. 100% of patients were administered 5% dextrose in 0.45% saline, as per local availabilities. On admission, U&Es were checked in 97%, and blood glucose in 79% of patients. However, U&Es were only checked in 31% and blood glucose in 14% of the patients still on maintenance fluids 24 hours later. Fluid input and output charting was documented in 94% of patients, but in only 19% of these patients were subtotals written every 24 hours. The standard charts used at Mater Dei Hospital do not have a section for 12 hourly documentation.

Conclusion Staff within the department must be educated regarding the need for improved intravenous fluid prescription and the importance of conducting daily U&Es and blood glucose input and output monitoring. Documentation of input and output must also be improved. The input and output charting form needs to be reviewed to include 12 hourly subtotals.