compliance to a certain degree and this drug is not used often enough to be familiar to the average junior doctor. The use of vancomycin in complex and requires an understanding of pharmacokinetics and drug handling unique to the pharmacist skill set. Our aim for the future is that as our pharmacist team acquires more independent prescribers, direct adjustment of treatment plans will become a pharmacist role within the Trust.

REFERENCE

AN EVALUATION OF THE MANAGEMENT OF THROMBOSIS IN NEONATES AND INFANTS USING DALTEPARIN

Sian Gaze, 1Falak Latif, 2Kim Wolff, 1Evelina London Children’s Hospital; 2King’s College London

Aim To assess the safety and efficacy of the current dalteparin dosing recommendations in achieving therapeutic anti-Xa levels, when used for the treatment of thrombosis in neonates and infants. The objectives included: To assess the number of neonates/infants administered dalteparin for thrombotic events. To evaluate how many neonates/infants achieved a therapeutic anti-Xa level (4 hour post-dose level of 0.5–1 unit/ml) To measure the duration between starting dalteparin and achieving a therapeutic anti-Xa level.

Methods Retrospective electronic searches were conducted to identify neonates and children prescribed and administered dalteparin between January 2016 and October 2017. These included reports from the JAC pharmacy dispensing programme, Medchart (electronic prescription chart) and Omniscil (ward electronic medicines storage system). A data collection form was designed using Excel, and piloted on a few randomly selected patients. Following the pilot, appropriate changes were made to the form. Inclusion criteria included: Treatment doses of dalteparin Neonates/infants under 12 months age Exclusion criteria included: Dalteparin thromboprophylaxis Missing data e.g. no anti-Xa levels recorded. Treatment doses of dalteparin Neonates/infants under 12 months age Exclusion criteria included: Dalteparin thromboprophylaxis Missing data e.g. no anti-Xa levels recorded.

DALTEPARIN

Results A total of 25 patients were included in the study: 18 neonates and 7 infants. In the neonatal group, ages ranged from 32 weeks preterm to 42 days post term delivery. The median age at time of dalteparin administration was 15 days. Weights ranged from 1.8 kg to 4.2 kg. In the infant group, ages ranged from 2 to 11 months. Weights ranged from 3.2 kg to 11.7 kg. 100% (25/25) patients achieved a therapeutic anti-Xa level; however, 100% (25/25) patients required dose adjustments to reach these levels. The mean dose required to reach therapeutic anti-Xa levels in neonates and infants was 250 units/kg (±60) and 140 units/kg (±50), respectively. In neonates, the duration between initial dalteparin administration and achieving therapeutic anti-Xa levels ranged from 2–8 days. In 8/18 (44%) patients, it took a minimum 5 days to achieve therapeutic anti-Xa levels. No episodes of renal impairment or thrombocytopenia were observed.

Conclusion Dalteparin was successful in achieving therapeutic anti-Xa levels in neonates and infants following cumulative dose increases from the initial dose. The initial recommended dose of dalteparin for neonates is too low and should be increased to 250 units/kg achieve therapeutic anti-Xa levels quicker, and to minimise the need for numerous blood tests and dose adjustments. Further studies are required to verify these results, due to the small patient numbers.

DIPHTHERIA TREATMENT

Claire Hannah. Sheffield Children’s NHS Foundation Trust

Background Diphtheria is a life threatening but vaccine preventable disease. 5 cases were identified by Public Health England (PHE) in 2017. Respiratory diphtheria is characterised by a pseudomembrane which obstructs the airways. Corynebacterium diphteria produces an exotoxin that causes local tissue necrosis, myocarditis, polyneuropathy, paralysis, respiratory failure and death.

Clinical case A 4 year old boy was admitted via A&E with suspected group requiring intubation and ventilation on intensive care unit (ICU). Throat swabs confirmed diphtheria diagnosis. PHE was contacted and diphtheria antitoxin was obtained. The patient received two subcutaneous doses of diphtheria-antitoxin. He developed myocarditis, Acute Kidney Injury (AKI), impaired left ventricular function and polyneuropathy. He was treated with 14 days intravenous vancomycin and clindamycin following multiple antibiotic changes.

Pharmacy contribution Anti-toxin: Diphtheria anti-toxin was obtained and advice was provided regarding an appropriate dose and route of administration. Ward staff were reluctant to give a subcutaneous infusion. A pharmacist provided reassurance that this was the only way to treat the infection and a subcutaneous cannula was inserted. He was given 0.2 ml subcutaneously as a test dose followed by the remaining 40,000 units. His second dose was given as a test dose of 0.2 ml followed by 60,000 units between two sites due to multi-organ involvement. Chemoprophylaxis: The patient’s family and 34 staff members required prophylactic antibiotics. They received azithromycin 500 mg once daily for 3 days. Staff members had throat swabs and were to remain off work until these swabs were negative which resulted in the Trust cancelling elective operations and admissions. Pharmacy confirmed azithromycin was safe for 34 adult patients and checked for interactions with currently prescribed medicines and advised appropriately.

Critical care Creatinine doubled and the pharmacist reviewed drugs to account for renal impairment. The pharmacist highlighted that clarithromycin can prolong QT interval. An echocardiogram revealed the patient had prolonged QT interval and clarithromycin was switched to an alternative after discussion with the microbiologist.
Vancomycin therapeutic levels were reached on day 5. The dose remained unchanged for the remainder of the course and levels taken every 3 days were appropriate. The pharmacist prepared a weaning plan for morphine and clonidine. The pharmacist advised reducing dexamethasone and stopping when no longer required due to raised blood glucose measurements.

Lessons learned How to obtain and administer diphtheria antitoxin. What chemoprophylaxis to provide to family and staff, the difficulties of supplying this to so many adults in a children’s hospital and the pressure the hospital faced having 34 staff members excluded for 48 hours while cultures were taken. The importance of personal protective equipment to protect staff and other patients. Monitoring parameters: vancomycin levels, renal function, cardiac function, blood sugars.

Importance of encouraging parents to have their children vaccinated with all the primary immunisations to protect their children and others.

REFERENCE

P006

HOW CAN ELECTRONIC ORDER SETS REDUCE TIME TAKEN TO PRESCRIBE MEDICATIONS ON ADMISSION TO PICU?

Jenny Gray, Jane Hutchinson. Bristol Royal Hospital for Children

10.1136/archdischild-2019-nppc.16

Aim Our paediatric intensive care unit (PICU) has been using the Phillips ICCA electronic prescribing system since 2016. This system has an ‘order set’ function that allows a pre-populated list of medications to be created for use in certain situations. Potential benefits include reduced time to prescribe medications, reduced medication error rate and improved prescribing efficiency. The PICU quality improvement group and Pharmacy Informatics team created an order set for patients under 1 year of age admitted from theatre following cardiac surgery, which was implemented in June 2017. Our theatres do not use the ICCA system so as the patients are transferred with infusions running, there is a time gap where the patient has infusions running on PICU without a live prescription on ICCA. The aim of this project was to establish a reduction in the time taken for all 13 medications to be prescribed. In turn, this would reduce the risk of running infusions without a live prescription.

Methods Data was collected retrospectively from the ICCA system on 15 patients pre and 15 patients post the introduction of the order set. Time of admission was set when the patient was allocated a bed on ICCA. The times at which each medication was prescribed were taken directly from ICCA. A user satisfaction survey was also sent out to during the order set implementation phase.

Results The time taken to prescribe all 13 medications was reduced on average by 9.4 hours per patient. The average time saved per medication was 43 minutes. Pre implementation, the average time to prescribe the medications was 11.4 hours (95% CI [5.5, 17.3]). Post implementation, the time taken to prescribe the same medications was 2 hours (95% CI [0.5, 3.5]). Pre implementation, prescriptions were started at least 30 minutes (average) after the patient arrived on PICU. Post implementation, prescriptions were started 30 minutes before patient admission and completed within 30 minutes of arrival. 20 staff members completed the user satisfaction survey. The survey had a 13% return rate. 70% of users agreed or strongly agreed that using the order set function improved prescribing efficiency and 55% of users agreed or strongly agreed that the order set helped ensure appropriate doses.

Conclusion Implementation of an order set for this patient group removed the risk of running infusions without a live prescription. This project is an example of how prescribing support functions within electronic prescribing packages can reduce time taken to write up medications within our unit, allowing prescribers to spend more time on other duties. Following the success of this intervention, further order sets will be created for use on our unit. A high level of clinical knowledge from the pharmacy support team and strong engagement with the clinical team was essential in creating a product that was fit for purpose. Limitations of this project are that we did not have the capability to assess a reduction in medication error. We now have increased support within the Pharmacy Informatics team to enable this for future projects.

P007

IMPROVING PAEDIATRIC CHEMOTHERAPY PRESCRIBING THROUGH USE OF AN ELECTRONIC PRESCRIBING SYSTEM

1 Charlotte Summerfield, 2 Susan Kafka, 3 Michelle Lewis, 2 Guy Makin, 4 Joseph Williams, 2 Samuel Wood, 1 University of Manchester, 2 Royal Manchester Children’s Hospital

10.1136/archdischild-2019-nppc.17

Aim Paediatric prescriptions are almost 50% more likely to contain an error than adult orders. The risk of prescription error is further increased when prescribing for malignant disease.1 In 2017 the Trust introduced ChemoCare, an electronic prescribing system for paediatric chemotherapy. The primary aim of this study was to investigate whether implementing ChemoCare has affected the incidence and type of errors made in paediatric chemotherapy prescriptions, compared with written prescriptions. A secondary aim was to explore possible reasons why these prescribing errors may occur. Since 2014 it has been mandatory for all NHS England specialist trusts to send monthly submissions to the Systemic Anti-Cancer Therapy (SACT) Database, regarding the treatment of malignant disease in secondary care.2 Therefore, the study also analysed Trust compliance with communicating treatment data to SACT.

Methods Data collection took place over a four-week period in Spring 2018. Prescriptions were reviewed by pharmacists and categorised as written or electronic. Prescriptions were then checked for 7 different error types; calculation error, drug prescribed on wrong day, incorrect drug prescribed for cycle, incorrect dose of concomitant medications, incorrect surface area used, not adjusted dose for previous age or weight related toxicities, no drug prescribed. The Fisher’s Exact test was employed to detect significance between chemotherapy prescription type and error incidence. A written questionnaire was designed to obtain the views of consultants, pharmacists and specialist trainees, and explore possible...