Differentially Alprostadil Associated Fever: Characterization of the Pharmacokinetics of Alprostadil Associated Fever

Background

Little is known about fetal acetaminophen (paracetamol) pharmacokinetics and its potential for toxicity, despite the frequent use of acetaminophen during pregnancy. The aim of this study was to develop a feto-maternal physiologically based pharmacokinetic model (f-m PBPK) to predict placental transfer and PK of acetaminophen and its metabolites in fetus at term pregnancy.

Methods

Previously, a pregnancy PBPK model was developed for prediction of maternal PK of acetaminophen and its metabolites. This model was structurally extended with the fetal liver, and quantitative information on the maturation of relevant enzymes was integrated. Three different approaches (ex vivo placenta perfusion experiments, scaling of passive diffusion transfer rates, and the Mobi® default method) to describe placental drug transfer were tested. Predicted August 2017 and developed fever on alprostadil. Cases were defined as neonates with a positive bacterial culture and controls were defined as neonates with a negative culture. Multivariate cox-regression was conducted to identify potential parameters that may differentiate alprostadil from infectious fever.

Results

Three hundred and four neonates developed fever under alprostadil. Fifty five (18%) had a positive bacterial culture and 249 (82%) had a negative culture. In univariate analysis, the duration of alprostadil infusion was 95 hours (IQR 45–116) in the case group and 72 hours (IQR 49–215) in the control group (p=0.011). The time between alprostadil initiation and fever was longer for the case group: 14.13 hours (IQR 6.5–47.5) versus 12.96 (IQR 5.5–30.51), (p=0.039). In multivariate cox-regression, a more than 10% increase in neutrophil count before fever was significantly associated with an increased risk for infection (HR 6.14, 95% CI 1.94–19.42). A trend towards an association was observed with CRP > 10 mg/dl before fever (HR 2.5, 95% CI 0.66–9.47) and in an increase ≥1000 micromol/L in WBC before fever (HR 1.74, 95% CI 0.58–5.21).

Conclusions

In neonates with CHD on alprostadil therapy, an increase in neutrophil count before the appearance of fever is associated with infection. Full sepsis work-up and is still warranted in neonates who develop fever under alprostadil. Further larger studies are needed to fully establish these results.

Disclosure(s)

The authors have no conflict of interests to disclose.

References

maternal and fetal acetaminophen concentrations were compared with those observed in the literature. umbilical cord data at birth.

Results The 3 different approaches to predicted acetaminophen PK in the umbilical vein were found to yield broadly similar results. Acetaminophen exposure was similar in maternal blood compared to venous umbilical cord blood. Prediction of the median dose fraction of acetaminophen converted to its metabolites (fa) revealed higher maternal acetaminophen-glucuronide formation clearance and sulphate formation compared to that in the fetal liver (fa glucuronide 52.2 vs 0% and fa sulphate 30.4 vs 0.8%, respectively) and higher fraction of aceticaminophen converted to the reactive metabolite N-acetyl-p-benzoquinone-imine (fa NAPQI 6.5 vs 0.06%) in pregnant women compared to their fetus.

Conclusion No differences were observed in the 3 approaches for integration of placental drug transfer. Differences in acetaminophen biotransformation to its metabolites between pregnant women and their fetuses were quantitatively predicted.

Disclosure(s) Paola Mian received a Short term Minor (STM-2017) grant from the Stichting Sophia Kinderziekenhuis funds to conduct this research.

P67 IMPACT OF ENANTIOMER-SPECIFIC MATURATIONAL CHANGES IN PHARMACOKINETICS ON THE RACEMIC KETOROLAC TARGET TROUGH CONCENTRATION

1M Cloesmeijer, 1E Kroekels, 1M van Esdonk, 2A Lyn, 3A Smits, 4D Tibboel, 5Y Daail, 6K Oikkola, 7K Allegaert, 4P Mian*. 1Systems Biomedicine and Pharmacology, Leiden Academy Centre for Drug Research, Leiden University, Leiden, The Netherlands; 2Department of Anaesthesiology and Pain Medicine, Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, WA, USA; 3Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium; 4Department of Paediatric Surgery and Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands; 5Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland; 6Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; 7Cluster Woman and Child, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium; 8Department of Pediatrics, Division of Neonatology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands.

Introduction Ketorolac is a racemic drug with analgesic effects specific to its S-enantiomer. This study aimed to describe enantiomer-specific maturational pharmacokinetics (PK). Simulations were performed to describe how S-ketorolac exposure in infants differs from adults, and how this affects the adult racemic analgesic trough threshold EC50 (EC50thr-adult 0.37 mg/L) in infants (EC50thr-infant) when the same S-target is applied.

Methods A population PK analysis (NONMEM 7.3) was performed based on 1020 plasma samples from 5 studies including 80 patients (adults, children, infants) following single intravenous ketorolac administration.

Results S-ketorolac PK was best described with a 2-compartment model in infants and 3-compartment model in adults, while R-ketorolac PK was best described with a 2-compartment model in all. S-ketorolac clearance [mean population value: 3.45 L/h/56 kg] and central volume of distribution (V1) [4.27 L/56kg] increased exponentially with bodyweight (0.75, 0.59 respectively). R-ketorolac clearance [0.93 L/h/56kg], peripheral volume of distribution (V2) and inter-compartmental clearance (Q) increased exponentially with bodyweight (0.62, 1.20, 0.76 respectively), V1 [4.11 L/56kg] linearly with bodyweight. Simulations revealed EC50thr-adult (0.37 mg/L) contained 0.048 mg/L S-ketorolac as mean in typical adults (BW 48.6–99.6 kg), while EC50thr-adult contained 0.032–0.036 mg/L S-ketorolac in typical infants (BW 5.3–10.6 kg). To reach adult S-enantiomer concentration (0.048 mg/L) in typical infants (BW 5.3–10.6 kg), EC50thr-infant should be 0.49–0.46 mg/L, respectively.

Conclusion Enantiomer-specific maturational PK of ketorolac were described. Subsequent simulations displayed differences in proportion of S- and R-ketorolac on the racemic threshold EC50. A The same S-ketorolac concentration necessitates a higher EC50thr-infant to EC50thr-adult.

Disclosure(s) Nothing to disclose

P68 SIGNIFICANT ORAL DRUG USE IN CRITICALLY ILL CHILDREN: RATIONAL THERAPY OR A BLACK BOX?

1J Mock*, 2J Windster, 3J van Rosmaalen, 4L Harlff, 5D Tibboel, 3,5 S de Wildt. Erasmus MC – Sophia Children’s Hospital, Rotterdam; 3Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden; 2Erasmus MC – Sophia Children’s Hospital, Rotterdam; 4Princess Maxima Center for Pediatric Oncology, Utrecht; 5Radboud University Medical Center, Nijmegen, The Netherlands.

Background The disposition of orally prescribed drugs in critically ill children may be affected critical illness in addition to age, resulting in erratic effects and safety. We aimed to study oral drug prescribing in the neonatal and pediatric intensive care unit (NICU and PICU).

Methods A one-year retrospective cohort study of all drug prescriptions, including route of administration for all children admitted to the NICU and PICU of the Erasmus MC-Sophia’s children’s hospital.

Results 1723 children with 2091 unique admissions received per admission (median [IQR]) 5 (3–10) drugs; 1 (0–2) orally and 3 (1–7) intravenously (IV). During mechanical ventilation 15% and 75% of drugs were given orally and IV, respectively. In non-ventilated patients, 27% of drugs were given orally and 60% IV. The 5 most frequently orally prescribed drugs were: vitamin K, spironolactone, oral probiotics, amphotericin B (prophylaxis) and trimethoprim.

Discussion Critically ill infants receive a considerable proportion of drugs orally. Considering that critical illness may significantly impact intestinal drug absorption, this may expose them to an increased risk of ineffective or unsafe drug therapy.

Disclosure(s) Nothing to disclose

P69 PHARMACOKINETICS OF A CONTINUOUS INFUSION OF PIPERACILLIN/TAZOBACTAM TO CHILDREN USING AN ELASTOMERIC PUMP (POPPET STUDY): PILOT DATA FROM DOUBLE LUMEN CENTRAL LINES

1J Moss*, 1V Price, 1S Paulus, 5V Ramos-Martin, 1A Melaine, 1E Evans, 1P Newland, 1W Hope, 1D Hawcut, 2B Pizer. 1Alder Hey Children’s NHS Foundation Trust; 2Department of Women’s and Children’s Health, Institute of Translational Medicine; 3Antimicrobial Pharmacodynamics and Clinical Pharmacology, University of Liverpool, Liverpool, UK.

Background Piperacillin/Tazobactam is the first-line antibiotic for the treatment of febrile neutropenia in the UK. There is