to ensure high quality research. Specifications for the validation process, but also for the assessment of data, acquired in a study setting, are given by the EMA and FDA to ensure highest quality of the data.1 2

Methods A multi-level analytical quality system was established. Data of the calibration standards (CSs), quality control samples (QCs), and incurred sample reanalysis (ISR) were evaluated according to the specifications given by the EMA and FDA guidelines.1,2 For a run to be considered valid ≥6 levels or 75% of the CSs and 67% of the QCs (≥50% per level) had to vary ≤±20% (LLOQ ≤±25%) from their nominal concentration.1,2 For the ISR analysis at least 67% of the ISR samples have to lay in ±30% to the nominal concentration of the mean of the original and reanalysed value.[1]

Results Seventy analytical runs were conducted, applying the quality measures, 79% runs were classified as valid and were used to determine unknown samples in a paediatric study. The high quality of the acquired data is reflected in the high conformity of the CSs and QCs to the EMA and FDA guidelines, 99% of the CSs and 95% of the QCs were accepted. Further underlining the high quality of the acquired data, 85% of the IRS have also been accepted. The assay was successfully used over a time period of 29 months.

Conclusion The results of the quality assessment confirmed the robustness of the aldosterone assay throughout the whole study duration. Thus, the samples measured by this assay are reliable and facilitate the high quality research in the paediatric population.

REFERENCES

Disclosure(s) Nina Makowski, Ilja Burdman, Mohsin Ali, Bartel A, Bjorn B. Burckhardt declare that there is no conflict of interest.

DIFFERENTIATING ALPROSTADIL ASSOCIATED FEVER FROM INFECTIOUS FEVER: A RETROSPECTIVE CASE-CONTROL STUDY OF NEONATES WITH DUCTUS DEPENDENT CONGENITAL HEART DISEASE IN A TERTIARY CARE CENTER

1 R Masarwa, 2 S Soskin, 3 A Vardi, 4 G Paret, 1 M Matok*. 1 Division of Clinical Pharmacy; 2The Hebrew University of Jerusalem, Jerusalem; 3Sackler Faculty of Medicine, Tel Aviv University; 4Department of Pediatric Intensive Care Cardiac Care, Safra Children’s Hospital, Chaim Sheba Medical Center; 5Department of Pediatric Intensive Care Medicine, Safra Children’s Hospital, Chaim Sheba Medical Center, Tel-Aviv, Israel

Background Alprostadil is used to maintain ductus patency in neonates with ductus dependent congenital heart disease (CHD), until corrective surgery. Fever is a common side effect of alprostadil and may also be a sign of infectious disease. We aimed to identify potential parameters that may differentiate infectious from alprostadil fever.

Methods Retrospective case-control study included all neonates with ductus dependent CHD, who were admitted at the Children’s Hospital in Ramat-Gan, Israel, from August 2003 to August 2017 and developed fever on alprostadil. Cases were defined as neonates with a positive bacterial culture and controls were defined as neonates with a negative culture. Multivariate cox-regression was conducted to identify potential parameters that may differentiate alprostadil from infectious fever.

Results Three hundred and four neonates developed fever under alprostadil. Fifty five (18%) had a positive bacterial culture and 249 (82%) had a negative culture. In univariate analysis, the duration of alprostadil infusion was 95 hours (IQR 45–116) in the case group and 72 hours (IQR 49–215) in the control group (p=0.011). The time between alprostadil initiation and fever was longer for the case group: 14.13 hours (IQR 6.5–47.5) versus 12.96 (IQR 5–30.51), (p=0.039). In multivariate cox-regression, a more than 10% increase in neutrophil count before fever was significantly associated with an increased risk for infection (HR 6.14, 95% CI 1.94–19.42). A trend towards an association was observed with CRP ≥ 10 mg/dl before fever (HR 2.5, 95% CI 0.66–9.47) and in an increase ≥ 1000 micromol/L in WBC before fever (HR 1.74, 95% CI 0.58–5.21).

Conclusions In neonates with CHD on alprostadil therapy, an increase in neutrophil count before the appearance of fever is associated with infection. Full sepsis work-up and is still warranted in neonates who develop fever under alprostadil. Further larger studies are needed to fully establish these results.

Disclosure(s) The authors have no conflict of interests to disclose.

CHARACTERIZATION OF THE PHARMACOKINETICS OF ACETAMINOPHEN AND ITS METABOLITES IN THE FETUS THROUGH INTEGRATION OF PLACENTAL TRANSFER IN A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL

1,2 P Mian*, 3,4 K Allegaert, 5 P Annaert, 5,6 P Annaert, 1 D Tibboel, 7,8 K Van Calsteren, 2,3 J van den Anker, 2 A Dallmann. 1 Intensive Care and Department of Paediatric Surgery, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands; 2Pediatric Pharmacology and Pharmacometrics Research Center, University Children’s Hospital Basel (UKBB), Basel, Switzerland; 3Department of Development and Regeneration, University Hospitals Leuven, Leuven, Belgium; 4Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands; 5Drug Delivery and Disposition; 6Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; 7Certara LP, Princeton, NJ, USA; 8Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium; 9Division of Clinical Pharmacology, Children’s National Health System, Washington DC, DC, USA

Background Little is known about fetal acetaminophen (paracetamol) pharmacokinetics and its potential for toxicity, despite the frequent use of acetaminophen during pregnancy. The aim of this study was to develop a feto-maternal physiologically based pharmacokinetic model (f-m PBPK) to predict placental transfer and PK of acetaminophen and its metabolites in fetus at term pregnancy.

Methods Previously, a pregnancy PBPK model was developed for prediction of maternal PK of acetaminophen and its metabolites. This model was structurally extended with the fetal liver, and quantitative information on the maturation of relevant enzymes was integrated. Three different approaches (ex vivo placenta perfusion experiments, scaling of passive diffusion transfer rates, and the Mobi gradient method) to describe placental drug transfer were tested. Predicted...