Abstracts

Physiologically based pharmacokinetic models to predict fetal exposure to antiviral drugs

1X Liu, 2J Mompour, N Rakhmanina, 1J van den Anker, 3D Green, 4G Burckart, 5B Best, 6M Mirochnick, 7E Capparelli, 8A Dallmann*. Children’s National Health System, Washington D.C., DC; 2University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA; 3Office of Pediatric Therapeutics; 4Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD; 5School of Medicine, Boston University, Boston, MA, USA; 6University of Basel Children's Hospital, UKBB, Basel, Switzerland

Background Physiologic changes associated with pregnancy may have a large impact on drug disposition. The goal of this study was to build PBPK maternal-fetal models to predict the fetal exposure to antiviral drugs including emtricitabine and acyclovir.

Methods PBPK models were built in the Open Systems Pharmacology Software Suite version 7.3 (www.open-systems-pharmacology.org). The maternal-fetal PBPK model structure was developed in MoBi and exported to PK-Sim for population modeling. The pregnancy data for those drugs were from in vivo maternal and fetal blood samples taken at delivery.

Results In the acyclovir ex vivo experimental data simulation, the fitted was 0.056 L/h (95% confidence interval: 0.043 - 0.069 L/h) and the fitted was 0.056 L/h (95% confidence interval: 0.49 (95% confidence interval: 0.043 - 0.056 L/h)). The predicted ratio between acyclovir in fetal concentrations in the umbilical vein plasma and the maternal plasma ranged from 0.37 - 0.77, whereas the observed ratios were slightly higher and ranged from 0.61 - 1.1. The previously published, and CLpl (1.49 L/h) parameters were applied to the emtricitabine maternal-fetal PBPK model, and the emtricitabine concentrations in the umbilical cord were adequately predicted.

Conclusion These results increase the confidence in applying PBPK models to predict maternal and fetal drug exposure. Improved maternal-fetal PBPK models may streamline and accelerate the performance of pharmacokinetic and safety studies for drugs in pregnant women.

Disclosures

The opinions expressed in this article are those of the authors and should not be interpreted as the position of the U.S. Food and Drug Administration or of the National Institutes of Health. The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References


Disclosure(s)

Nothing to disclose

037 USE OF ALBENDAZOLE IN CHILDREN WITH ASYMPTOMATIC TOXOCARIASIS

1G Garcia Bursisren*, 2S Moroni, 3N Gonzalez, 4G Moscatelli, 5G Balerini, 2Alcheh.
1Parasitology and Chagas, Buenos Aires Children Hospital, Ciudad de Buenos Aires; 2Parasitology and Chagas, Buenos Aires Children Hospital, Buenos Aires, Argentina

Background Human toxocariasis is highly prevalent and its global importance may be greatly underestimated. Toxocariasis occurs mainly in childhood by ingestion of parasite eggs from contaminated environment. During migration in human tissues the Toxocara larvae can cause several symptoms including eye involvement, but the majority of patients are asymptomatic. Eosinophilia is a marker of activity of this disease. There are no studies supporting the treatment of asymptomatic patients.

Methods To evaluate the effectiveness of albendazole (10–15 mg/kg/day BID for 15 days) a randomized, placebo-controlled trial was carried out in asymptomatic children (ClinicalTrials.gov #NCT00755560). Treatment response was defined as mean absolute reduction in eosinophil counts, 12 months after treatment.

Demographic, complete blood count, liver and renal function and stool parasite exam were assessed at diagnosis, and every 4 months during follow up. Inclusion criteria: age 2 to 15 years, reactive toxocara excretory-secretory substances (TES) by ELISA, eosinophils >1100/mm3, normal fundoscopy and non geohelminthic infection.

Results The 45 enrolled subjects, median age 5.3 years (range 2–13), were randomized in a 1: 1 relationship.

At 12-month follow-up, eosinophil median was: 1008/mm3 (IQ 25-75: 680 to 2023) in placebo group and median of 1360/mm3 (IQ 25-75: 761 to 2226) in albendazole group (p = 0.37).

Kinetics of specific antibody titers by the ELISA showed an erratic pattern. No differences were observed in the values between the 2 treatment groups.

Both groups had minor adverse events and no patient needed to discontinue medication. In asymptomatic patients with toxocariasis, albendazole was not effective to reduce eosinophil counts.

Conclusion Given that toxocariasis is a neglected disease, in order to evaluate the effectiveness of albendazole or other drugs, further studies need to be conducted.

Disclosure(s)

Nothing to disclose

References

1A Facchin, 2V Elke*, 3N Bengoub, 4V Baudouin, 5A Masin, 6S Magreault, 7E Jacq-Aigrain.
1Pediatric Pharmacology and Pharmacogenetics; 2Nephrology, Assistance Publique – Hopitaux de Paris, Hopital Robert Debré, Paris, France

Population pharmacokinetics of ganciclovir after oral valganciclovir in renal transplant children

1A Facchin, 2V Elke*, 3N Bengoub, 4V Baudouin, 5A Masin, 6S Magreault, 7E Jacq-Aigrain.
1Pediatric Pharmacology and Pharmacogenetics; 2Nephrology, Assistance Publique – Hopitaux de Paris, Hopital Robert Debré, Paris, France

Disclosure(s)

Nothing to disclose

References