Background Safety of paediatric pharmacotherapy is of major concern. Due to high off-label use (about 46–64% of patients in primary care are affected), missing paediatric dosage forms and complex dosage calculations, adverse drug reactions (ADR) and medication errors (ME) occur more often in children.1–3 Moreover, it is estimated that 3 to 5% of paediatric hospital admissions are drug-related.4–7

The aim of the present study was to systematically investigate the nature and preventability of drug-related hospital admissions in paediatrics.

Methods An observational study was carried out for 10 months at the Department of Paediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen, Germany. All patients aged 0 to <18 years, admitted during the study period and treated for at least 24 hours at the general paediatric ward were assessed and analysed with regard to ADR and ME requiring hospitalisation. The identification of these was based on intensive chart review. Seriousness was assessed using the ICH E2A criteria.8

Results 741 patients fulfilled the inclusion criteria and were screened for ADR and ME leading to hospital admission. Median age of patients was 7 years (IQR 1–13) while duration of stay was 2 days (IQR 2–4) at median level. In total 50 events were discovered in relationship to drug intake before hospitalisation; 41 (82.0%) of these were assessed with regard to ADR and ME requiring hospitalisation. The identification of these was based on intensive chart review. Seriousness was assessed using the ICH E2A criteria.8

Conclusions This study confirms that drug-related hospital admissions pose a significant problem in children and adolescents, however more than 50% of them were considered preventable. Increasing awareness towards paediatric pharmacotherapy and providing standardised guidance may help to reduce the risk for drug-related hospital admissions.

REFERENCES

Disclosure(s) Nothing to disclose.
higher cost and less than optimum management of infectious diseases.

Objectives To determine the relative likelihood of true allergy in patients suspected to have a penicillin allergy and to investigate the risk factors involved. We hypothesized that the vast majority of self-reported penicillin allergies are less likely to be true allergies when proper immunological work up is performed.

Methods Paediatric patients aged 0–18 years presenting to the ADR clinic at the Children’s Hospital of Western Ontario (CHWO) with suspected antibiotic allergies were included. A retrospective review of charts was conducted to obtain demographic information and results from allergological and in vitro testing. Subjects were evaluated with a radioallergosorbent test (RAST) or the lymphocyte toxicity assay (LTA)/the in vitro platelet toxicity assay (iPTA) depending on whether the history was most consistent with an immediate allergy or a delayed hypersensitivity, respectively. Patients with negative RAST or LTA/iPTA were recommended to undergo confirmatory oral challenge test (OCT).

Results Ninety subjects were identified including 75 with possible penicillin allergy and 10 with suspected allergy to a non-penicillin antibiotic. Five subjects presented with a mixed allergy. Based on the results from RAST, in vitro testing and OCTs, the prevalence of a true allergy in the penicillin group was 6.25% vs. 66.67% in the non-penicillin group (p < 0.001). Patients presenting with severe reactions were more likely to be truly allergic (p < 0.01). In-patients were more likely to present with non-penicillin allergies and were subsequently more likely to have a true allergy (p < 0.001).

Conclusions True allergy is very rare in patients with suspected penicillin allergies and can be determined with a proper work-up including OCT. Shorter protocols for the evaluation of these patients would be beneficial.

Disclosure(s) Nothing to disclose

Abstracts

004 FETAL OUTCOME FOLLOWING DYDROGESTERONE EXPOSURE IN PREGNANCY

G Koren*, D Gilboa. Maccabi Research Institute, Tel Aviv

Background The progestin dydrogesterone (DYD) is widely used for threatened and recurrent miscarriages, as well as for dysfunctional bleeding, infertility and other obstetric and gynecological indications. While its apparent efficacy has been compared to other progestins, its fetal safety has not been investigated.

Objectives To follow up fetal outcome after gestational exposure to DYD.

Patients and methods Using a 2.5 million patients’ database, we compared congenital malformations among babies exposed in utero to DYD between 1999 and 2016, to a control group not receiving this medication. We adjusted for concomitant exposure to in vitro fertilization (IVF) and to other forms of assisted reproductive technology (ART).

Results There were 8508 children exposed in utero to DYD (4417 males, 4091 females) out of 777,422 live births. After excluding cases with concomitant exposure to IVF and other forms of ART, DYD was associated with increased risk for hypospadias [OR 1.28 (1.28–1.25)]. In additional analysis, including also those exposed to IVF and other forms of ART, there was also increased risk for cryptorchidism [1.37 (1.19–1.58)] and congenital dislocation of the hip [OR 1.58 (1.42–1.78)].

Conclusions DYD confers teratogenic effects after exposure to the recommended doses in pregnant women. Some of these adverse fetal effects are further augmented by concomitant use of IVF and other forms of ART. These independent teratogenic effects may have important implication for the child and family.

Disclosure(s) Nothing to disclose

005 PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELLING TO CHARACTERIZE ACETAMINOPHEN PHARMACOKINETICS AND NAPQI FORMATION IN NON-PREGNANT AND PREGNANT WOMEN

Background Little is known about the pharmacokinetics (PK) of acetaminophen during different stages of pregnancy. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict acetaminophen PK throughout pregnancy.

Methods PBPK models for acetaminophen and its metabolites were developed in non-pregnant and pregnant women. Physiological and enzymatic changes in pregnant women expected to impact acetaminophen PK were considered. The models were evaluated using goodness-of-fit-plots and through comparison of predicted PK profiles with in-vivo PK data. Predictions were performed to illustrate the concentrations at steady state (Cmean), used as indicator for efficacy of acetaminophen achieved following 1000 mg q8h. Furthermore, as measurement for potential hepatotoxicity, the molar dose fraction of acetaminophen converted to NAPQI was estimated.

Results PBPK models successfully predicted the PK of acetaminophen and its metabolites in populations of non-pregnant and pregnant women. Predictions resulted in lowest Cmean in the third trimester (4.5 mg/L), while Cmean was 6.7, 5.6 and 4.9 mg/L in non-pregnant, first and second trimester populations, respectively. Assuming a constant increased activity of CYP2E1 throughout pregnancy, the molar dose fraction of acetaminophen converted to NAPQI was estimated.

Conclusion Risk for drug related hepatotoxicity in pregnant women might be increased as more NAPQI is produced during pregnancy compared to non-pregnant women, especially...