LONGITUDINAL AUDIT OF DIABETES CONTROL WITH INSULIN PUMP THERAPY OVER SEVEN YEARS OF TREATMENT – INTERIM RESULTS

D. Havres, S. Karumakala. Paediatric Diabetes, Royal Alexandra Children’s Hospital, Brighton, UK

Objective: The aim of this audit is to review diabetes control over time in Type 1 Diabetes Mellitus (T1DM) patients managed with CSII in our Paediatric Diabetes Unit (PDU).

Methods: Retrospective review of diabetes control (%HbA1c) of T1DM patients managed with CSII in our PDU (23/03/2009–10/01/2017).

Inclusion criteria: All patients managed with CSII whose data is complete i.e. have a locally recorded pre-CSII%HbA1c and are managed with CSII for at least one full year following switch to CSII.

Pre-CSII%HbA1c = mean of up to three%HbA1c recorded prior to switch to CSII.

Annual CSII%HbA1c = mean of all%HbA1c recorded per whole year since switching to CSII.

Results: In the time period reviewed there have been a total of 57 patients managed with CSII; seven patients were excluded from analysis.

There was a slight male preponderance (1.08:1, 52%) with a mean age (±SD) at diagnosis/transfer into our unit of 7.6 years (±4.5 years) and at switch to CSII of 10.2 years (±4.8 years).

Analysis of data showed that those patients with the better control pre-switch generally maintained better control following switch to CSII.

Conclusion: Our PDU has a small number of patients managed with CSII. Results obtained were reflective of other studies which demonstrated worsening diabetes control over time.

Aims: To compare automated bone age assessment software with consultant paediatric radiologist reports in order to determine acceptability for use in our centre.

Background: Bone age assessment is widely used in the evaluation of endocrine and genetic diseases as well as to assess the response to medical therapy. Our centre uses the Tanner and Whitehouse 2 radius, ulnar and short bones (TW2 RUS) method which involves grading these bones of the hand and wrist individually using maturity indicators from a reference book. This is then used to calculate a skeletal maturity score, which in turn is transformed into a bone age. This can be time consuming, especially for the less experienced radiologist. It has also been shown that there is significant intra and interobserver variability in assessment. Automated methods have been developed to reduce reporting time as well as observer variation.

Methods: Every bone age x-ray (hand and wrist) examination over a 3 month period was both reported by a consultant paediatric radiologist and assessed by an automated method (BoneXpert; Visiana, Denmark). We then analysed the TW2 results of each to see if the automated method would be acceptable for use in our centre. Results: The mean variability between reporter and automated method was 0.71 years with a standard deviation of 0.58 years. This compares favourably with published studies which have separately reported TW2 specific interobserver variability of 0.74 years and an interobserver standard deviation of 0.71 years. Our results also equate to a 9.18% mean variability (SD 7.84) between reporter and automated software.

Conclusion: Automated bone age assessment software yields comparable results to consultant paediatric radiologist reports. In particular the mean differences in bone age were similar to reported interobserver variability. This has led to our centre finding automated bone age software acceptable for use locally.