interference of medical equipment, infection control concerns, and reported parental complaints.

Mobile devices provide a multitude of benefits for clinical staff including increased access to useful apps such as drug-dose calculators, and other validated point-of-care tools, which are of high educational value and have been shown to support better clinical decision making and improved patient outcomes.²

Methods We designed a survey assessing parental and staff perception on the use of mobile phones, using a five point Likert scale. 40 staff and 40 carers participated in the questionnaire. Following this, we designed two clinical scenario questionnaire. 40 staff and 40 carers participated in the questionnaire. Scenarios 1 participants were prohibited from using mobile phones. Subsequently, participants were granted access to mobile phones for assistance in Scenario 2.

Results 38/40 (95%) parents surveyed felt that healthcare professionals should be allowed to use mobile technology in a clinical environment. Similarly, of the 40 staff members surveyed, 39/40 (97%) felt access to mobile phones for clinical reasons was appropriate.

For the drug administration scenario (performed by nursing staff), all participants were quicker using mobile phone for assistance. The average length of time was 1 min 22 s quicker. Task accuracy was maintained at 100% with and without mobile phone use.

For the prescriber scenario (performed by medics and non-medical prescribers), again all participants were quicker using mobile phone aide, with an average length of 1 min 26 s quicker. Accuracy of 100% was maintained in both cohorts.

Conclusion Despite previous reported parental concern, this survey highlights the strong carer support for healthcare professionals appropriately using mobile phones in clinical areas. Staff members were similarly keen for the use of mobile technology to aid their practice.

We have demonstrated an improvement in efficiency of performance clinical tasks with the assistance of mobile phones, ensuring accuracy was maintained. The appropriate use of mobile phones promotes well-informed, safety-conscious, technology-assisted, effective clinical care.

REFERENCES
1. Wallace S, Clark M, White J. 'It’s on my iPhone': Attitudes to the use of mobile computing devices in medical education, a mixed methods study. BMBL Open 2012 August.

G168 AN OBSERVATIONAL STUDY OF CLINICIAN’S GAZE BEHAVIOUR DURING SIMULATED PAEDIATRIC EMERGENCIES

Aims Clinicians collect, prioritise and respond to visual cues when making decisions about patient care. This is of particular importance in the resuscitation environment where they are required to absorb and process large volumes of complex visual information in a time critical manner. Eye tracking technology allows for the measurement of an observer’s point of gaze based on where their pupil is focused. Eye tracking technology has been used in aviation and surgery to describe differences in the gaze behaviour between experts and novices. The aim of this study was to describe the gaze behaviour of clinicians from different training backgrounds during a simulated paediatric emergency.

Methods Twenty-seven clinicians from different clinical areas within a tertiary children’s hospital undertook a standardised, six minute, high fidelity simulated paediatric emergency. Participants wore SMI Eye Tracking Glasses. We measured the number of times participants looked at predefined key areas (fixation count) and the duration of time spent looking at each of these areas (dwell time). The time taken to key clinical interventions was also recorded.

Results Participants from all groups looked more frequently and for longer at the patient (chest and airway) than any of the other key areas of interests. Paediatric Intensive Care Unit (PICU) consultants focused longer on the chest and airway than any other groups. The gaze behaviour of paediatric consultants and trainees was similar. Both groups spent longer looking at the defibrillator and algorithm (51,180 ms and 50,551 ms respectively) than the PICU consultants and consultants in paediatric emergency medicine (19,804 ms and 28,095 ms respectively). The PICU consultants were quickest to perform key clinical interventions.

Conclusions This study is the first to describe differences in the gaze behaviour between clinicians from different backgrounds during a simulated paediatric emergency. Differences observed between experts and novices are similar to those described in aviation and surgery. Further research is needed to evaluate the potential use as an educational tool in the resuscitation setting.

Abstracts

G169(P) ACTUP – AN INTERDISCIPLINARY APPROACH TO PREPARING SENIOR PAEDIATRIC TRAINEES FOR CHALLENGING CLINICAL SCENARIOS

Aims In recent years there has been an increasing recognition of the importance of non-technical skills training in medical education. Strong communication and interpersonal skills are crucial to good clinical practice. These are of particular relevance when communicating with team members, parents and patients in challenging situations. We identified a lack of postgraduate training opportunities for paediatric trainees to develop these skills. Our aim was to devise an interdisciplinary training opportunity which would enable senior paediatric trainees to develop their communicative skills by undertaking simulated scenarios based on challenging clinical situations.

Methods Level 3 trainees in our deanery were invited to attend the ACT³P course. We recruited a diverse faculty consisting of paediatricians, paediatric nurses, social workers and psychologists. In a unique collaboration, we worked closely with drama students from our local university. The drama students acted in the role of parents for the simulations. The