Sepsis is ‘A life-threatening organ dysfunction caused by a dysregulated host response to infection’ This definition is perhaps the start of the problem.

The exact incidence of sepsis is unknown, an apparent increased incidence may just be due to better recording of cases. Cases of missed sepsis have recently been highlighted in the press, been the subject of the Health Services Ombudsman website ‘Time to Act’ and even resulted in criminal prosecution for doctors missmanaging sepsis. The Department of Health has made the recognition and early management of sepsis the target of a major national campaign.

Recognition of sepsis involves measuring basic clinical data and simple laboratory tests. It is not complex but it remains an area fraught with difficulty for clinicians.

There are a myriad of guidelines both long (NICE sepsis) and short (sepsis 6) which are not complex, so why is it still so hard?

Human factors result in both diagnostic errors and failure to adhere to protocols. This talk will focus on the cognitive biases which impede sepsis recognition and contribute to clinical errors. Improving sepsis recognition may take more than more protocols.

Background Guillain-Barré syndrome (GBS) can be associated with ‘swine ‘flu’ vaccination, so in 2009 surveillance for GBS and Fisher syndrome (FS) was established via the British Paediatric Surveillance Unit (BPSU) before UK immunisation against pandemic H1N1 influenza commenced. Then in 2010 there were reports from Scandinavia of an association between narcolepsy and Pandemrix (a monovalent pandemic strain ‘flu vaccine containing the oil-in-water adjuvant AS03). To investigate this in the UK it was necessary to identify retrospectively children who had been diagnosed with narcolepsy from before the 2009 pandemic: the BPSU system was not suitable for this.

Results BPSU GBS study: 112 children with GBS (66 boys and 46 girls) and 3 boys with FS were identified between September 2009 and September 2011 inclusive. There was an infection in the 3 months preceding onset in 92/112 GBS and 3/3 FS cases. In England, 7 had received pandemic A/H1N1 seasonal influenza vaccine before GBS onset (3/7 within 6 months, including 1 within 3 months). The number of GBS cases who had been vaccinated was no greater than expected by chance.

Narcolepsy study: 16 sleep centres and paediatric neurology centres in England identified 75 cases aged 4–18 years with narcolepsy onset after January 1st 2008. Eleven were vaccinated before onset; seven within 6 months. The odds ratio for vaccination at any time prior to onset in cases diagnosed by July 2011 was 14.4 (95% confidence intervals 4.3 to 48.5) and 16.2 (3.1 to 84.5) for vaccination within 6 months of onset. The relative incidence in a self-controlled case series analysis with onset from October 2008 to December 2010 was 9.9 (2.1 to 47.9). The attributable risk was between 1 in 57 500 and 1 in 52 000 doses.

Conclusion The BPSU GBS study found no increased risk of GBS in those children living in England after pandemic A/H1N1 2009 influenza vaccine or 2010/2011 seasonal influenza vaccine. In contrast, the narcolepsy study indicated that there was a causal association between vaccination with AS03 adjuvanted pandemic A/H1N1 vaccine and narcolepsy, confirming reports from Finland and Sweden.
Bacterial meningitis is a medical emergency. Prompt recognition and management is required for best outcome. Using several surveillance systems (including the BPSU, national laboratory systems, neonatal infection network and meningitis charities), we showed that the incidence has not declined amongst UK young infants in contrast to other age groups. These young infants also had a rate 70 times those of adults. We identified that nearly half of the infants did not present with fever and that there is no progression of features in the first 24 hours in contrast to what is known about children with meningococcal disease.

Additionally, there was a wide variation in management of infants including empiric antibiotics and the role of liofis has been over-estimated over time leading to wide use of a penicillin based antibiotics including infants over 1 month of age. There was also variation in follow up practice.

The findings of our studies in addition to literature review forms the basis of our bacterial meningitis management algorithm and etool aimed at trainee doctors to communicate lessons from our research, highlight gaps in recognition and management and promote best practice.

We used anonymised case studies to create modules about recognition of clinical features, decision making, investigations, management and follow-up. We addressed key issues around timely lumbar puncture, appropriate empiric antibiotics and requirement for on-going monitoring.

The etool has been endorsed by the RCPCH and passing a test at the end of it will allow the user to collect CPD points. A pilot roll out received positive feedback with 90% rating it as useful or very useful and 97% saying that they would recommend the etool to a colleague.

We believe that this educational package will contribute to improved outcomes for these vulnerable infants. Parents of survivors show appreciation for our dissemination of the findings to improve the management of future cases. We have demonstrated the huge potential benefit of collaboration between all the surveillance systems especially when dealing with rare diseases. Our study is the pioneer BPSU study to produce a management etool.

Abstracts

LISTERIOSIS IN NEONATES AND INFANTS IN SWITZERLAND AND CANADA

1S Huang, 2B Abu Raya, 3M Jost, 4R Bortolussi, 5J Bettinger, 6J Grabowski, 7T Lacaze, 8J Robinson, 9K Poslau Barbe, 10M Mäusezahl, 11R Kollmann. Federal Office of Public Health, Department of communicable diseases, Bern, Switzerland; 2Vaccine Evaluation Centre, BC Children’s Hospital, Department of Paediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, Canada; 3Dalhousie University, IWK Health Centre, Halifax, Canada; 4Department of Paediatrics, University of Manitoba, Manitoba, Canada; 5Division of Neonatology, University of Ottawa, Ottawa, Canada; 6University of Alberta, Edmonton, Canada; 7University Hospitals of Geneva, Paediatric Infectious Diseases, Geneva, Switzerland

Aims Neonates and infants with listeriosis are at high risk of serious disease outcomes, yet in many countries, little information is reported in routine surveillance. This study aims to begin closing this gap.

Methods Clinicians participating in the Swiss Paediatric Surveillance Unit (SPSU) or the Canadian Paediatric Surveillance Program (CPSP) recorded cases of listeriosis in neonates and infants up to the age of 6 months with information on demographic indicators, manifestation, treatment, clinical course, outcome, exposure and maternal and perinatal risk factors collected.

Results In Switzerland four cases occurred over the first 8 months of the study (April to November 2017). Half of the infants had early-onset disease (EOD, defined as onset of symptoms<7 days of life (DOL)) and the other half had late-onset disease (LOD, defined as onset of symptoms>7 DOL). EOD is considered to be mother-to-child transmitted, while the pathogenesis of LOD is unclear. All cases manifested with sepsis and meningitis, and one EOD case presented with skin and mucosal lesions as well. All infants made a full recovery with antibiotic treatment with no long-term sequelae noted. Notably, three of the four cases occurred in one hospital during the same week. However, it could not be established