BACKGROUND
Severe acute malnutrition (SAM) is a major global health problem estimated to affect 16.9 million children under-5, and confers an increased risk of mortality and morbidity. Community Management of Acute Malnutrition (CMAM) programmes have revolutionised treatment for SAM and significantly reduced associated mortality. Community follow-up after discharge from treatment is variable, as links to supplementary feeding programmes are often weak. This review aimed to draw attention to the uniquely vulnerable period of 6–24 months post-discharge that, until now, has fallen through the gap.

METHODS
Embase, Global Health and MEDLINE were systematically searched with terms related to SAM, nutritional intervention and follow-up between June and August 2017.

RESULTS
A total of 3691 articles were retrieved from the search, 55 full-texts were screened and seven met the inclusion criteria to be included in the review. Loss-to-follow-up, mortality, relapse, morbidity and anthropometry were outcomes reported. Between 45.1% and 0.0% of cohorts were lost-to-follow-up. Mortality ranged from 10.4% to 0.6% at an average of 12 months after discharge. Two studies reported improvement of weight-for-height (WHZ) from discharge to 12 month follow-up, whilst the three studies that reported height-for-age (HAZ) found either limited or no improvement.

CONCLUSION
This review suggests there is a scarcity of studies that follow-up children for at least 6 months after-discharge. Therefore, there is an urgent need for further follow-up studies investigating a diverse range of outcomes, using control groups and streamlined admission and discharge criteria.

This review has demonstrated that children remain vulnerable to adverse outcomes after discharge from SAM treatment programmes. We must begin to look beyond anthropometric definitions of recovery and the sole focus of reducing mortality. Instead, we should take a holistic view of child nutrition that considers the role of the home and community environment for a complete rehabilitation of these children, and uses CMAM as an opportunity to promote good nutrition and nutritional practices in children for life.

British Paediatric Respiratory Society and British Society for Paediatric and Adolescent Rheumatology

AIMS
Scoliosis may impair both lung function and exercise capacity. There is some evidence to suggest lung function is positively correlated with exercise capacity, however the exact relationship between these variables is poorly defined. This study investigated the relationship between exercise variables and lung function in children and young people with scoliosis, looking particularly at whether patients show evidence of improved physical conditioning despite impaired lung function.

METHODS
Retrospective analysis of data from Spirometry (FEV1, FVC), Whole Body Plethysmography, Cardiopulmonary Exercise Testing (CPET) and patient outcome questionnaires (SRS-22) undertaken prior to spinal fusion. CPET measures included maximal exercise capacity [VO2peak] as well as VO2 at anaerobic threshold [AT] expressed as%predicted VO2max—a measure of physical conditioning, and minute ventilation [VE] from which breathing reserve [BR] could be calculated. Analyses were performed using SPSSv23, and correlations expressed using Pearson’s correlation co-efficient.