Aim: To consider if a comprehensive clinical induction improves paediatric trainee anxiety and confidence about starting a tertiary neonatal intensive care unit (NICU) placement. Working in a tertiary NICU is compulsory training for paediatric doctors. Feeling competent and confident to manage common neonatal scenarios is often a cause of trainee anxiety. Departmental inductions deliver a wealth of information to ensure the process of safe handover between rotations of junior doctors. Rarely, however, are they used to cover the topics most needed by the new doctors or used as a teaching experience.

Methods: A standardised clinical induction was implemented to a tertiary NICU departmental programme. Every trainee rotated through simulated sessions covering airway management, central access, neonatal life support and an emergency simulation scenario. This allowed trainees to practice essential skills for the job in a safe environment with the department’s equipment and resources including permanent NICU staff.

Results: Qualitative and quantitative feedback was obtained from a total of 14 trainees over a one year period at two separate NICU clinical inductions. Trainees completed questionnaires rating their confidence overall and in relation to NICU specific situations, before and after the induction [1 (least) to 10 (most)]. These responses were analysed using the Mann-Whitney-U test. In all situations, there was an overall improvement in trainee confidence post induction. This was statistically significant (p < 0.05) in trainee confidence to manage a neonatal airway problem with airway manoeuvres or non-invasive respiratory support and trainee confidence to initiate management in situations requiring neonatal resuscitation. Other positive factors trainees reported as a result of the clinical induction included feeling part of the NICU team (13/14 trainees scored ≥7/10) and feeling inspired (11/14 ≥8/10).

Conclusions: Empowering trainees through a good clinical induction improves confidence and experience of working in a tertiary NICU, potentially improving patient care and management. The departmental induction is an excellent education opportunity for all involved.

Methods: Following discussions with the Head of communications/IT department, a dedicated ADHD Service liaison NHS was launched in December 2014. The liaison team email details including aims/objectives were circulated via the Trust GP liaison to all local GPs in December in 2014 and recirculated again in 2015 and 2016. The tool was advertised in the local Trust liaison GP newsletter and circulated to the ADHD Adult Mental Health teams and CAMHS via the Adult Mental Health Transition worker and ADHD Nurse Specialist.

Results: Following its initial launch in 2014, Professionals accessed the ADHD dedicated liaison email a total of 15 times. Professionals who accessed this included GP/Practice managers and Adult Community Mental Health Transition worker. Queries were mostly about the ADHD referral pathways, ADHD tool/pathway training updates and transitions. The average time taken to respond to ADHD related queries by the ADHD Team was 20.8 hours an improvement from the 2 weeks average response.

Conclusions: Developing a ‘one stop shop’ dedicated ADHD Service liaison communication tool demonstrated a reduction in the average time taken to respond to ADHD related queries and offered the advantage of Professionals accessing ADHD resources more readily. A dedicated communication email can potentially result in shorter patient journeys thus enhancing quality of care, patient experience and safety, all necessary ingredients for quality improvement.

Introduction: Hypoglycaemia is a common reason for admission for term and near term infants to neonatal units (NICU). Early recognition and management of neonatal hypoglycaemia has important clinical and economic consequences. In our hospital neonatal blood sugar is measured using both a standard ‘blood gas analyser’ and a branded hand-held glucose measurement device (HHGMD), and there is tendency to trust the HHGMD result in preference to blood gas result.

Aim: We aimed to compare the blood glucose results of both the blood gas analyser and HHGMD on same blood sample at same time to ensure no significant difference was detected.

Methods: Blood sugar results in individual neonates were recorded using both the HHGMD and blood gas analyser. We obtained basic demographics and route of sample for all babies. A quality control measure for the HHGMD was carried out most days by the biochemist and a calibration of the blood gas machine was done daily. Data are mainly descriptive; categorical variables are described as percentages with binomial 95% confidence intervals (95% CI), Wilcoxon Matched-Pairs Signed Ranks Test was used to test for statistical significance.

Results: There were 118 separate paired blood gas and HHGMD results logged from 32patients in the 8 week period of