submitted for monthly review. The process thereafter consisted of three stages: a letter of recognition from the lead consultant and senior sister; a summary detailing the event and its learning points was prepared for the FERF noticeboard (located so staff, patients and their families could view it) and each individual FERF was discussed at the Risk Forum Meeting.

The results A simple impact analysis was made after a six month pilot. We quantified feedback by category and semi-qualitatively assessed the impact of the FERF concept on attitude and team morale.

The results of this analysis demonstrated an increase in the amount of formal positive feedback being received by all members of the team. Morale has been sustained beyond the pilot and many respondents reported a positive change in their attitudes towards other team members.

While larger scale work is needed to further evaluate FERF as an educational intervention, the extraordinarily positive results from the pilot unequivocally suggest that the concept is worth pursuing. Recognising excellence should become part of everyday practice and appraisal.

Background and aims Half a million children attend UK Emergency Departments (EDs) due to head injury (HI) annually. Most have a mild HI, but early identification of those with serious traumatic brain injury (TBI) is crucial. The risk of TBI is significantly higher in the presence of a skull fracture. Cranial bone ultrasound (CRUSS) is an emerging investigation to identify or exclude fractures while avoiding radiation burden. We aimed to assess current imaging practice and evaluate CRUSS accuracy to determine whether its use could reduce CT scanning rates.

Methods Retrospective chart review over twelve months at two sites:

Site One: Tertiary Paediatric ED
Site Two: District General Hospital ED seeing adults and children.

All children 0–16 years (except for suspected abuse cases) receiving imaging for HI, identified via radiology electronic databases, were included.

Results 2,233 and 804 children were seen due to HI at Sites 1 and 2 respectively, of which 26 (%1) and 38 (%5) fulfilled selection criteria. Imaging modality rates are presented in Table 1. Most received CT; only a small number (%) had CRUSS – of these, all were neurologically stable, two were delayed presentations (±24 hrs after injury).

Site 2 had a higher CT rate overall (1% vs 4%). There were seven delayed presentations at Site 2 – five could have benefited from US rather than CT if the service was available.

Conclusions CRUSS may have a role in both acute and subacute HI, whether as a decision making aid or diagnostic tool. Its accuracy and utility cannot be determined due to the low numbers in this study. However, we have demonstrated that it is being used, and as this use is likely to increase, further prospective research is required to fully determine its role.

G79(P) INVESTIGATION OF CHILDREN WITH SUSPECTED SKULL FRACTURE – SERVICE EVALUATION AT TWO CENTRES

K Stone, M Lyttle. Southmead Emergency Department, North Bristol NHS Trust, Bristol, UK; Emergency Department, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK

Background and aims Half a million children attend UK Emergency Departments (EDs) due to head injury (HI) annually. Most have a mild HI, but early identification of those with serious traumatic brain injury (TBI) is crucial. The risk of TBI is significantly higher in the presence of a skull fracture. Cranial bone ultrasound (CRUSS) is an emerging investigation to identify or exclude fractures while avoiding radiation burden. We aimed to assess current imaging practice and evaluate CRUSS accuracy to determine whether its use could reduce CT scanning rates.

Methods Retrospective chart review over twelve months at two sites:

Site One: Tertiary Paediatric ED
Site Two: District General Hospital ED seeing adults and children.

All children 0–16 years (except for suspected abuse cases) receiving imaging for HI, identified via radiology electronic databases, were included.

Results 2,233 and 804 children were seen due to HI at Sites 1 and 2 respectively, of which 26 (%1) and 38 (%5) fulfilled selection criteria. Imaging modality rates are presented in Table 1. Most received CT; only a small number (%) had CRUSS – of these, all were neurologically stable, two were delayed presentations (±24 hrs after injury).

Site 2 had a higher CT rate overall (1% vs 4%). There were seven delayed presentations at Site 2 – five could have benefited from US rather than CT if the service was available.

Conclusions CRUSS may have a role in both acute and subacute HI, whether as a decision making aid or diagnostic tool. Its accuracy and utility cannot be determined due to the low numbers in this study. However, we have demonstrated that it is being used, and as this use is likely to increase, further prospective research is required to fully determine its role.

G80(P) OPTIMISING MULTIVITAMIN SUPPLEMENTATION IN PAEDIATRIC EMERGENCY DEPARTMENT (ED) PATIENTS – A HEALTH PROMOTION INITIATIVE

S Hartshorn, M Murphy. Emergency Department, Birmingham Children’s Hospital, Birmingham, UK

Aims Vitamin D deficiency is an increasing problem within the UK, particularly in high-risk groups. Clinical manifestations include seizures and cardiomyopathy in infants, muscle weakness, non-specific abdominal pain, poor growth and rickets. Current recommendations are that all children from six months to five years of age receive 7 – 8.5 micrograms of vitamin D per day (Department of Health and Chief Medical Officers). The British Paediatric and Adolescent Bone Group advocate that exclusively breastfed infants receive vitamin D supplements from soon after birth.

The Government’s ‘Healthy Start’ programme aims to prevent deficiency by providing multivitamins (A, C and D) free to families on income support. Some Clinical Commissioning Groups (CCGs) fund these vitamins beyond the scheme - in the case of our own CCG, this is for all children aged 6 months – 3 years inclusive.

Healthy Start vitamins have been available within our ED for some time, with a poster campaign in the ED waiting room encouraging parents/careers to request them. In view of our particular high risk populations, and the large number of cases of vitamin D deficiency diagnosed within our ED, we sought to optimise the provision of Healthy Start vitamins.

Methods Our ED documentation card was modified to prompt the nurse/clinician to routinely ask parents/careers of infants and children 3 years and below if they were currently receiving multivitamins. When this was not the case, a bottle of the Healthy Start vitamin drops was offered, together with a written information booklet about the scheme.

We compared the number of bottles of vitamins supplied before and after this change, by reviewing the log sheet entries for each issue.

Results Number of patients receiving Healthy Start vitamins:

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Dates</th>
<th>Number of patients</th>
<th>Average number of patients per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-change</td>
<td>March to Sept 2014</td>
<td>12</td>
<td>1.7</td>
</tr>
<tr>
<td>Post-change</td>
<td>Mid-Oct to mid-Nov 2014</td>
<td>52</td>
<td>52</td>
</tr>
</tbody>
</table>

Conclusion Patient attendances to EDs provide opportunities for clinicians to support national health promotion campaigns. This can be optimised by incorporating health promotion questions as a standard aspect of clinical care. The next stage of this initiative will be an audit of the new multivitamin process, to ensure that