significant weaker than that of community controls. Table 1 presents further details.

Conclusions These results indicate that SAM may be associated with a number of adverse long-term effects, including stunting, abnormal body composition and functional impairment. It will be crucial to identify effective strategies, not only to prevent SAM in the first place, but to improve long-term outcomes in SAM survivors. Interventions might include more proactive case finding to encourage earlier detection and continued follow-up after the initial treatment to support high risk children and families.

Abstract P05 Table 1 Linear regression of cases vs community controls

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Mean for Case (ex-SAM) children</th>
<th>Mean for Community control children</th>
<th>Cases vs Community Control Regression Coefficient</th>
<th>95% Confidence Interval</th>
<th>R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight-for-age</td>
<td>-1.6 z-scores</td>
<td>-1.2 z-scores</td>
<td>-0.35</td>
<td>-0.61 to -0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>Height-for-age</td>
<td>-1.8 z-scores</td>
<td>-1.3 z-scores</td>
<td>-0.48</td>
<td>-0.77 to -0.18</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>BMI-for-age</td>
<td>-0.9 z-scores</td>
<td>-0.7 z-scores</td>
<td>-0.22</td>
<td>-0.44 to 0.00</td>
<td>0.06</td>
</tr>
<tr>
<td>Waist/hip ratio (leg)</td>
<td>0.91</td>
<td>0.88</td>
<td>0.03</td>
<td>0.01 to 0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>Sitting height/standing height ratio</td>
<td>52.2</td>
<td>51.8</td>
<td>0.55</td>
<td>0.16 to 0.94</td>
<td>0.01</td>
</tr>
<tr>
<td>Hang grip strength (kg)</td>
<td>12.2 kg</td>
<td>13.8 kg</td>
<td>-0.12</td>
<td>-0.18 to -0.05</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Skinfold thickness ratio</td>
<td>1.73</td>
<td>1.72</td>
<td>-0.02</td>
<td>-0.12 to 0.07</td>
<td>0.61</td>
</tr>
</tbody>
</table>

P06 DELIVERY OF A SCHOOL HEALTH AND NUTRITION PROGRAMME FOR KENYAN CHILDREN: A FEASIBILITY STUDY

B Eder, J Bogie, D Magnus. Centre for Child and Adolescent Health, University of Bristol, Bristol, UK

10.1136/archdischild-2015-308599.6

Aims Health is a key factor in enabling universal access to education. Children miss over 200 million days of school every year due to illness. Traditionally, vertical approaches have been used to individually tackle child health and nutrition problems such as malnutrition or malaria. However, these interventions overlook the complex interactions between them. We therefore sought to develop a comprehensive, integrated school health and nutrition programme to produce long-term and sustainable improvements in child health and education outcomes.

Methods A 3 year pilot study was carried out in a population of 2,000 children aged 5–16 in rural Western Kenya. The programme comprised school meals, vitamin A supplementation, insecticide-treated bed nets, deworming, hand washing and health education. Data were collected on programme delivery and on health, nutrition and education parameters.

Results 2103 children were dewormed using albendazole, supplied with insecticide-treated bed nets and Vitamin A was given to all children under 5. School meals were provided daily to all children. Additional water points with soap were installed with a 32.5% observational increase in clean hands and 86% increased soap use. Preliminary results show increased school enrolment and reductions in school absenteeism (OR 0.70, 95% CI 0.61–0.82, p = < 0.001), in anaemia (OR 0.25, 95% CI 0.16–0.40, p = < 0.001) and undernutrition, both stunting (OR 0.56, 95% CI 0.48–0.65, p = < 0.001) and underweight (OR 0.55, 95% CI 0.42–0.73, p = 0.001).

Conclusion Our experience shows that a comprehensive school health and nutrition programme is feasible and that monitoring for health and education outcomes is possible in this context. The data suggest improvements in childhood anaemia and nutrition in conjunction with improved school attendance and enrolment. Complex interventions for improving school health are feasible and can produce long-term benefits above and beyond vertical programme initiatives.

P07 EVIDENCE-BASED GUIDANCE TO INFORM CONSENT SEEKING IN CHILDREN’S CRITICAL CARE TRIALS

K Woolfall, L Frith, B Young. Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK

10.1136/archdischild-2015-308599.7

Aims Challenges in seeking parents’ consent for research at the point when their child is critically ill have been a significant barrier to improving treatments for children and conducting trials. In 2008 UK legislation was amended to enable consent for emergency research to be sought after a child has been given the investigational drug or device. This is known as deferred consent. CONNECT is the first UK study to explore parent and practitioner views and experiences of deferred consent in children’s clinical care trials. It aimed to integrate evidence and ethical theory to inform practice guidelines to optimise recruitment and consent in this challenging setting.

Methods Mixed methods qualitative and quantitative study with 354 participants (292 parents, 39 nurses, 19 doctors and 4 Clinical Trials Unit practitioners). We integrated findings with previous research and ethical theory to develop draft guidance on deferred consent. The CONNECT advisory group and 32 key stakeholders (critical care practitioners, ethicists and parents) contributed to the development of the final CONNECT guidance.

Results Parents may be initially shocked or angered to discover their child can be entered into a trial without their prior consent. However, practitioners’ explanations of why consent is deferred can help address parents’ initial concerns and reassure them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitioners experienced in deferred consent describe how families’ initial concerns and reassurance them. Parents view deferred consent as more acceptable for trials of medical interventions already used in clinical practice than trials involving new interventions or a change in clinical practice. Practitio
to the needs of children and their parents. Further research is required to explore the views of children and bereaved parents who have experienced deferred consent.

**P08**

**BACKGROUND INCIDENCE TRENDS OF INTESTUSCPTION AMONG CHILDREN IN ENGLAND: RETROSPECTIVE ANALYSIS USING HOSPITAL EPISODE STATISTICS AND DATA LINKAGE TO COMPARE HES WITH THE BRITISH PAEDIATRIC SURVEILLANCE UNIT**

1L Samad, 1M Cortina-Borja, 1 A Sutcliffe, 2S Marven, 2C Cameron, 1H El Bashir, 1R Lynn, 1B Taylor. 1Institute of Child Health, University College London, London, UK; 2Paediatric Surgical Unit, Sheffield Children’s NHS Foundation Trust, Sheffield, UK; 3Health Protection Scotland, NHS National Services Scotland, Glasgow, UK; 4British Paediatric Surveillance Unit, Royal College of Paediatrics and Child Health, London, UK

10.1136/archdischild-2015-308599.8

**Aims** To estimate background trends in intussusception admissions prior to the introduction of rotavirus vaccine in the UK. To compare the quality of Hospital Episode Statistics (HES) with intussusception data from the British Paediatric Surveillance Unit (BPSU).

**Methods** Retrospective analysis of the NHS inpatient HES was carried out to estimate background intussusception trends in the paediatric population in England from 1995 to 2009. Data linkage was performed between HES and previously obtained BPSU data on intussusception among infants from March 2008 to March 2009.

The ICD-10 intussusception codes (K56.1, K38.8) were used to identify cases in HES (1995–2009). Incidence trends were calculated using the Office for National Statistics live births and mid-year population estimates as denominator.

We performed probabilistic data linkage to match HES records with BPSU cases, followed by a manual review to confirm the status of matched (and possibly matched) pairs (2008–2009). Capture-recapture methods allowed assessing the accuracy of HES and completeness of both data sources for intussusception. Validated incidence rates in infants were obtained following data linkage.

**Results** Of 11,259 intussusception records identified in HES and after excluding 2538 (22.5%) duplicates, 8721 (77.5%) cases were retained for trends analysis. A significant decline in background trends was observed predominantly among infants from 86.0/100,000 in 1997 to 34.0/100,000 in 2009 (60% reduction, p = 0.001). Seasonal modelling showed a significant excess of intussusception cases in winter and spring during 1995–2009 (p = 0.001, n = 4957 infants).

Data linkage between 254 intussusception cases in HES and 190 cases previously obtained via the BPSU (2008–2009) resulted in 163 matched pairs. Completeness of reporting was 85.8% for HES (163/190 BPSU cases) compared to 81.5% for BPSU (163/200 HES cases). The predictive positive value of HES was 78.7% (200/254 confirmed cases). The Lincoln-Petersen estimate yielded a total of 233 intussusception cases (95% CI: 227.4 to 238.8). The estimated annual incidence of intussusception among infants in England increased from 24.2/100,000 (unvalidated) to 28.9/100,000 (validated) (2008–2009).

**Conclusions** Background intussusception trends have declined among infants in England. The high accuracy and completeness of HES for intussusception highlight the usefulness of routinely collected data in monitoring rotavirus vaccine safety in England.

**P09**

**INITIAL DIAGNOSTIC OUTCOME OF SCREENING FOR CONGENITAL HYPOTHYROIDISM AFTER NEWBORN BLOODSPOT SCREENING: A UK SURVEILLANCE STUDY**

1RL Knowles, 1JM Oerton, 1C Deazeux, 1G Butler, 1P Griffiths, 1T Tetlow, 1C Cavanagh, 1T Cheetham, 1Institute of Child Health, University College London, London, UK; 2Paediatric Biochemistry, Royal Manchester Children’s Hospital, Manchester, UK; 3NHS Newborn Blood Spot Screening Programme, Public Health England, London, UK; 4Institute of Human Genetics, Royal Victoria Infirmary, Newcastle-Upon-Tyne, UK

10.1136/archdischild-2015-308599.9

**Introduction** Primary congenital hypothyroidism (CHT) is due to reduced thyroid hormone production. Oral thyroxine therapy commenced soon after birth improves cognitive development and growth. Despite 30 years of newborn screening for CHT in the UK, its success in identifying babies who require lifelong therapy for CHT remains unclear.

**Aim** To determine, through UK-wide active surveillance, the number and characteristics of children aged ≤ 5 years diagnosed annually with CHT, detected by screening or after clinical manifestations, and to describe clinical management.

**Results** During 13 months of surveillance, 704 children with positive screening results were reported by screening laboratories. Local clinicians completed 643 questionnaires (response rate = 91%). An additional 20 children aged < 5 years were notified who were not identified through screening, including three diagnosed prior to screening (2 family history, 1 unwell) and 17 with negative screening tests (10 preterm, 5 unwell, 2 Down syndrome); screening results were untraceable for 2 children. Of 643 screen positive children, 260 (40%) were boys, 130 (20%) were < 37 weeks gestation and most were of white or Asian ethnicity (379[59%] and 133[21%] respectively).

Investigations carried out soon after referral demonstrated serum TSH > 40 mU/l in 365; in an additional 43 children an abnormal thyroid scan result was associated with serum TSH ≤ 40 mU/l. Based on the reported initial investigations for 643 children, an expert panel assigned a diagnosis of CHT in 410, excluded CHT in 120 and considered 113 had probable/possible CHT requiring follow-up. The local clinicians commenced 485 children on oral thyroxine, 401 of whom were assigned as having definite CHT by the expert panel. During 12 months of follow up after diagnosis, eleven children died of causes unrelated to CHT.

**Conclusion** Our findings suggest that the predictive value of a positive screening test is at most 81% (523/643) assuming CHT is confirmed in those with possible CHT as an initial diagnosis. Our data suggest that permanent CHT cannot be confirmed at follow up after diagnosis, eleven children died of causes unrelated to CHT.

**Funding** Public Health England (NHS Newborn Blood Spot Screening Programme).

**Royal College of Nursing**

**G10**

**PLANNING AND IMPLEMENTING SERVICE CHANGE IN CHILDREN’S COMMUNITY NURSING**

G Spiers, G Parker, Y Birks. Social Policy Research Unit, University of York, York, UK

10.1136/archdischild-2015-308599.10