diagnosis. Responses were grouped into similar categories and coded.

Results

88/164 (54%) of invited families returned the questionnaire. The time from symptom onset to diagnosis ranged from 2 to 315 days (median 25 days). Most of this was the appraisal interval from symptom onset until perceiving the need to seek medical advice (median 25 days (interquartile range 14–50)). Most parents found alternative explanations for their child’s symptoms (Table 1). For example, polydipsia was attributed most commonly to hot weather (19/58, 33%) or infection (13/58, 22%), polyuria and nocturia were frequently explained by drinking more (29/47, 62% and 26/40, 65%) and tiredness was thought to be school related (12/44, 27%) or secondary to infection (5/44, 12%) or nocturia (4/44, 10%). Worsening or persistent symptoms was the most common reason parents mentioned for seeking medical help (n = 20) and their main concern at presentation was most commonly polydipsia (n = 40), followed by polyuria (n = 24). Finding alternative explanations for symptoms (n = 24) was the most common reason cited by parents for prolonging the time before diagnosis.

Conclusions

The appraisal interval for T1D is complex for parents. Most parents find reasonable alternative explanations for their child’s symptoms, which contributes to the time to diagnosis. Future interventions should recognise these difficulties and will need to include more than just a list of symptoms.

Abstract G472 Table 1 Parents’ explanations for the 10 most common symptoms

<table>
<thead>
<tr>
<th>Symptom</th>
<th>n</th>
<th>Number with explanation for symptom n(%)</th>
<th>Most common explanations n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polydipsia</td>
<td>85</td>
<td>58(68.2)</td>
<td>Hotweather 19(32.8)</td>
</tr>
<tr>
<td>Polyuria</td>
<td>73</td>
<td>47(64.4)</td>
<td>Infection 13(22.4)</td>
</tr>
<tr>
<td>Tiredness</td>
<td>66</td>
<td>44(66.7)</td>
<td>Activity/Travel 10(17.2)</td>
</tr>
<tr>
<td>Nocturia</td>
<td>64</td>
<td>40(62.5)</td>
<td>Drinking more 29(61.7)</td>
</tr>
<tr>
<td>Weight loss</td>
<td>56</td>
<td>33(58.9)</td>
<td>Urine infection 6(12.7)</td>
</tr>
<tr>
<td>Changes in behaviour/mood</td>
<td>48</td>
<td>31(64.6)</td>
<td>School related 12(23.7)</td>
</tr>
<tr>
<td>Change in appetite</td>
<td>45</td>
<td>28(62.2)</td>
<td>School related 3(9.1)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>37</td>
<td>19(51.4)</td>
<td>School related 3(9.1)</td>
</tr>
<tr>
<td>Nocturnal enuresis</td>
<td>33</td>
<td>23(69.7)</td>
<td>School related 13(56.6)</td>
</tr>
<tr>
<td>Different smelling breath</td>
<td>31</td>
<td>14(45.2)</td>
<td>Drinking more 13(41.9)</td>
</tr>
</tbody>
</table>

G473 OUTCOMES OF ABO INCOMPATIBLE KIDNEY TRANSPLANTATION IN CHILDREN

1. Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 2. Department of Transplantation, Guy’s and St Thomas’ NHS Foundation Trust, London, UK; 3. Department of Paediatric Nephrology, Evelina London Children’s Hospital, London, UK

Objective

ABO blood group incompatible transplantation (ABOi) has become increasingly common over the last decade, in part due to a shortage of suitable deceased donor allografts. Whilst encouraging data is emerging on short and medium term graft outcomes in adults, ABOi in children is rare; pre-transplant conditioning in paediatric patients remains challenging and concerns persist about an increased risk of rejection. Encouraged by good results in a large number of adult ABOi transplants, we extended our programme to paediatric recipients, and here report the largest European cohort.

Methods

A retrospective analysis of all ABOi paediatric renal transplant recipients in the 2 largest centres in the UK sharing the same tailored desensitisation protocol. Patients with pre-transplant titres 1 in 8 or above received rituximab one month prior to transplant; tacrolimus and mycophenolate mofetil were started one week pre-op. Antibody removal was performed to
reduce titres to 1 in 8 or less at surgery. No routine post-op removal was performed.

Results Ten children (age 2–14 years) underwent an ABOi kidney transplant (Figures 1 and 2 and Table 1). Graft and patient survival was 100%. Baseline titres, tailored desensitisation and graft outcomes are shown in table. One patient developed grade IIa rejection after 2 weeks successfully treated with anti-thymocyte globulin; no histological evidence of rejection in other 9 patients. Another patient had a rise in titre of 2 dilutions at week one treated with 2 immunoadsorption sessions. Nine patients had good graft function (eGFR 30–130 mls/min/1.73m²) at last follow up (range 1–36 months); one patient had eGFR 22 ml/min/1.73m². One patient developed CMV and BK; another EBV and BK.

Conclusion ABOi transplantation in children appears to have an optimal outcome with good graft survival, low risk of rejection and infectious complications.

Abstract G473 Figure 1
Blood group titre levels at baseline, week 1 and 2 and month 1 and 3 post transplant

Abstract G473 Figure 2
Tailored desensitisation strategy for antibody removal

G474 VARIATION IN PATIENT EXPERIENCE ACROSS PAEDIATRIC DIABETES UNITS (PDUS) IN ENGLAND AND WALES AND ASSOCIATION WITH GLYCAEMIC OUTCOMES

1D Charalampopoulos, 1R Amin, 1R Viner, 1J Warnier, 1J Edge, 1F Campbell, 1T Stephenson.
1Institute of Child Health, University College London, London, UK; 2Department of Paediatric Endocrinology, University Hospital of Wales, Cardiff, UK; 3Department of Paediatric Endocrinology and Diabetes, Oxford Children’s Hospital, Oxford, UK; 4Leeds Children’s Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK.

Background/Aims

Patient Reported Experience Measures (PREMs) are increasingly recognised as an important indicator of healthcare quality. We investigated variation in patient experience across Paediatric Diabetes Units (PDUs) in England and Wales and explored links between PREMs and glycaemic outcomes.

Methods

An aggregate analysis of linked PREM and glycaemic data for each PDU collected as part of the 2012–2013 National Paediatric Diabetes Audit (NPDA) was conducted. The percentage of patients/carers who reported a high level of satisfaction (scores 9 or 10/10) in the friends and family recommendation test was used as a quality indicator of diabetes care. A funnel plot of the above indicator was constructed and the 95% and 99.8% control limits around the mean were used to distinguish between common–cause (units lying within the control limits) and special-cause variation (units lying outside the control limits). A linear regression model was also fitted for the relationship between mean satisfaction score and mean HbA1c at PDU level.

Results

Percentage of patients who reported high satisfaction showed a 2.9-fold variation (range 35% to 100%) across PDUs with 60/170 (35.3%) and 33/170 (19.4%) units falling outside the 95% and the 99.8% control limits respectively. Of the 170 PDUs, 21 (12.4%) lay below the lower 99.8% control limit (Figure 1). Linear regression showed a significant negative association between mean HbA1c (mmol/mol) and average satisfaction score for each PDU (regression coefficient= -2.9, 95% CI: -4.7 to -1.1, p = 0.002) (Figure 2).

Conclusion

Patient satisfaction varied considerably across PDUs with one in three units exhibiting more variation than expected by chance. At aggregate level, clinics with higher mean