Methods

24 children registered with General Practitioners and who had buccal midazolam on their repeat prescription records were identified.

Results

Of the 24 children included in the study, 12 were in mainstream school and 12 were in special needs school. 15 children were on antiepileptic drugs. 10 children had generalised tonic–clonic seizures with or without absences, 7 had focal or multifocal seizures plus generalised tonic–clonic seizures (secondary generalised), 4 had focal seizures, 2 had multifocal seizures, and 1 child had absence seizures occurring in clusters. 1 child had focal seizures lasting less than 5 min (but was prescribed buccal midazolam due to parental anxiety). 23 children had seizures lasting more than 5 min. 22 children were under the care of a hospital consultant. 2 children had been discharged and GPs were asked to stop midazolam; but continued to be on repeat prescriptions. 21 children were on the appropriate dose according to BNF. 23 children had reference to a written management plan with 19 having a copy in the notes. 17 children had documented evidence of training delivered to parents. 19 children had an emergency plan at school. 10 children had used buccal midazolam in the community.

Conclusion

Majority of the prescriptions were in accordance with the NICE guidelines and on the appropriate dose. All but 1 had a written management plan but only 19 were available in notes. The fact that 2 children were still on the list of repeat prescription by the GP even after discharge was worrying and would not have come to attention if it was not for the audit.

Conclusion

This audit highlighted the need for the development and implementation of evidence-based melatonin guidelines for Paediatricians, a sleep tool-kit for health professionals to help conduct a more effective sleep interview and sleep information to help support families establish good sleep hygiene in their children. So far, a melatonin guideline and sleep support tool-kit has been developed and circulated to relevant stakeholders. This has resulted in better prescribing practice, sleep support for families and a reduction in melatonin prescribing. Following the introduction of the guidelines, the preliminary results on the melatonin expenditure concluded a cost saving amount of £5651 over a period of 5 months, April to August 2014, compared to introduction of the guidelines, the preliminary results on the melatonin expenditure concluded a cost saving amount of £5651 over a period of 5 months, April to August 2014, compared to

Aims

In 2012–2013 melatonin prescriptions cost our Paediatric department over £45,000 per year. An audit was carried out to explore the practice of prescribing melatonin among clinicians, compare it with current evidence for melatonin prescribing and find cost effective ways of reducing the annual melatonin spend.

Methods

Families of children with neurodevelopmental disorders issued with melatonin from hospital or community pharmacies from January to June 2013 were included in the audit. Cases were randomly selected and case-notes and doctor’s reports audited retrospectively. Children on melatonin for less than 6 months were excluded from the study.

Results

A total of 17 case-notes were audited. A detailed sleep history was documented in merely 1 case. Only 12% of cases were given verbal advice on sleep hygiene, prior to starting melatonin, and received sleep support whilst on melatonin. Paediatricians requested sleep hygiene support from Primary care in 6% of children. A sleep-diary was never used to monitor sleep at any stage of management. Children taking melatonin ranged from 1 to 8 years, with one child on melatonin for 12 years. Paediatricians did not suggest breaks from therapy in all cases. Given dosages of melatonin were ranged from 2 mg to 12 mg.

Conclusion

This audit highlighted the need for the development and implementation of evidence-based melatonin guidelines for Paediatricians, a sleep tool-kit for health professionals to help conduct a more effective sleep interview and sleep information to help support families establish good sleep hygiene in their children. So far, a melatonin guideline and sleep support tool-kit has been developed and circulated to relevant stakeholders. This has resulted in better prescribing practice, sleep support for families and a reduction in melatonin prescribing. Following the introduction of the guidelines, the preliminary results on the melatonin expenditure concluded a cost saving amount of £5651 over a period of 5 months, April to August 2014, compared to the same time period in 2013. These initial results are quite promising in predicting a larger saving in the future.
Abstracts

Aims To raise awareness of congenital glaucoma in Mosaic Downs’s syndrome. To encourage use of Down’s Syndrome Medical Interest Group (DSMIG) guidelines for ophthalmic screening in Mosaic Down’s.

Methods Assessment of community, medical and surgical records. Literature review of Down’s syndrome and associated eye conditions. Multi-Disciplinary Team (MDT) discussion between paediatric, genetics and ophthalmology specialities to inform future clinical practice.

Results Antenatal diagnosis of Mosaic Down’s syndrome confirmed at birth by cord blood sample showing 17% (5/30) cells affected (47XX + 21). Female term birth with no manifestations of Down’s syndrome and discharged home. Neonatal review at birth by ophthalmologist was not undertaken. At 12 weeks of age child presented at a routine community review with photophobia and corneal clouding. On examination she had bilateral buphthalmos with corneal oedema. An urgent ophthalmology review was followed by use of eye drops to relieve raised intraocular pressure. Bilateral goniotomies were performed with a repeat operation later in the left eye. Currently aged 2.5 years she has normal ocular pressures controlled by topical drops and near normal quality of vision.

Conclusion There is a documented association between Down’s syndrome and congenital glaucoma but we believe this to be the first report of glaucoma in Mosaic Down’s syndrome. Glaucoma is caused by reduced trabecular drainage. The damage caused by delay in treatment is irreversible. Therefore it is important to detect and treat as early as possible.

This rare presentation supports the wide variable expression of mosaic Down’s syndrome from normal to severe phenotype. The severity of symptoms does not correlate with the percentage of mosaic cells. In addition the level of mosaicism in the blood does not reflect the level of mosaicism in other tissues.

UK Down’s syndrome medical interest group (DSMIG) guidelines suggest neonatal review by ophthalmologist followed by monitoring of visual behaviour in infancy and comprehensive ophthalmological review by 2 years. We suggest that these guidelines should also be applicable for Mosaic Down’s syndrome follow up irrespective of percentage of cells affected.

G438(P) COMPARING THE WELL-BEING AND MENTAL HEALTH OF LOOKED AFTER CHILDREN (LAC)

1AM Lee, 2D Simkiss, 1Keegan. 1High Street Surgery, Heart of England Foundation Trust, Birmingham, UK; 2Children and Families Division, Moseley Hall Hospital, Birmingham Community Healthcare NHS Trust, Birmingham, UK

Introduction Evidence suggests that Looked after children are nearly 5 times more likely to have a mental illness than their peers. Over the last decade the concept of well-being has developed, especially within public policy. There is a hypothesis that improving an individuals well-being improves their mental health and reduces any associated mental illness.

Aims To assess the relationship between well-being and mental health problems in looked after children.

Methods From January 2014, the Warwick-Edinburgh Mental Well-Being Scale (WEMWBS) was added to the Strengths and Difficulties Questionnaire (SDQ) completed by all Looked After Children in Birmingham aged 14 years old and above. In August 2014, we retrieved data on all children with completed SDQ and WEMWBS scores.

Results 101 children were identified as having a completed WEMWBS and SDQ score. 32 of the children’s SDQ scores were >17 reflecting the child having substantial risk of clinically significant mental health problems. 64 of the children with completed WEMWBS scored average scores of 40–59, 14 children scored below average, and the remaining 23 children scored above average.

Conclusion There is no clear relationship between mental health problems and well-being scores for Looked After Children in this cohort. This finding supports the statement in the Chief Medical Officer Annual Report 2013 that ‘mental illness and well-being’ are not ends of the same continuum: it is possible to have high levels of subjective well-being despite having a mental illness, and vice versa'.

Abstract G438(P) Figure 1 WEMWBS and SDQ scores for 101 looked after children