Article Text

Describing the phenotype in Rett syndrome using a population database
Free
  1. L Colvin1,
  2. S Fyfe2,
  3. S Leonard1,
  4. T Schiavello1,
  5. C Ellaway3,
  6. N de Klerk1,
  7. J Christodoulou3,
  8. M Msall4,
  9. H Leonard1
  1. 1Centre for Child Health Research, The University of Western Australia, Telethon Institute for Child Health Research, Perth, Western Australia
  2. 2Curtin University of Technology, Perth, Western Australia
  3. 3Western Sydney Genetics Program, Children’s Hospital at Westmead, Sydney, New South Wales
  4. 4Child Development Center, Providence, Rhode Island, USA
  1. Correspondence to:
    Dr H Leonard, Telethon Institute for Child Health Research, PO Box 855, West Perth WA 6872, Australia;
    hleonard{at}cyllene.uwa.edu.au

Abstract

Background: Mutations in the MECP2 gene have been recently identified as the cause of Rett syndrome, prompting research into genotype-phenotype relations. However, despite these genetic advances there has been little descriptive epidemiology of the full range of phenotypes.

Aims: To describe the variation in phenotype in Rett syndrome using four different scales, by means of a population database.

Methods: Using multiple sources of ascertainment including the Australian Paediatric Surveillance Unit, the development of an Australian cohort of Rett syndrome cases born since 1976 has provided the first genetically characterised population based study of Rett syndrome. Follow up questionnaires were administered in 2000 to families and used to provide responses for items in four different severity scales.

Results: A total of 199 verified cases of Rett syndrome were reported between January 1993 and July 2000; 152 families provided information for the follow up study. The mean score using the Kerr scale was 22.9 (SD 4.8) and ranged from 20.5 in those under 7 years to 24.2 in those over 17 years. The mean Percy score was 24.9 (SD 6.6) and also increased with age group from 23.0 to 26.9. The mean Pineda score was 16.3 (SD 4.5) and did not differ by age group. The mean WeeFIM was 29.0 (SD 11.9), indicating extreme dependence, and ranged from 18 to 75.

Conclusion: We have expanded on the descriptive epidemiology of Rett syndrome and shown different patterns according to the severity scale selected. Although all affected children are severely functionally dependent, it is still possible to identify some variation in ability, even in children with identified MECP2 mutations.

  • Rett syndrome
  • population
  • phenotype
  • mutation

Statistics from Altmetric.com

Supplementary materials

  • Describing the phenotype in Rett syndrome using apopulation database
    L Colvin, S Fyfe, S Leonard, T Schiavello, C Ellaway, N de Klerk, J Christodoulou,
    M Msall, H Leonard

    Web-only Tables
    [View PDF]

    Table 1 Kerr Scale:Severity Level Definitions
    Table 2
    Percy Scale:Severity Level Definitions
    Table 3
    Pineda Scale: Severity Level Definitions
    Table 4
    Ascertainment of Verified Cases
    Table 5
    Scores for Kerr Scale Items: all cases, and by age group
    Table 6 Scores for Percy Scale Items: all cases, and by age group
    Table 7 Scores for PINEDA Scale Items: all cases, and by age group
    Table 8 Percentage with each score for WeeFIM Features: all cases, and by age group

Footnotes

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.