
608  Neal SR, et al. Arch Dis Child 2023;108:608–615. doi:10.1136/archdischild-2022-325158

G
lo

ba
l 

ch
il

d 
he

al
th

Original research

Diagnosing early- onset neonatal sepsis in low- 
resource settings: development of a multivariable 
prediction model
Samuel R Neal    ,1 Felicity Fitzgerald    ,2 Simba Chimhuya,3 Michelle Heys,1 
Mario Cortina- Borja    ,1 Gwendoline Chimhini3

To cite: Neal SR, Fitzgerald F, 
Chimhuya S, et al. 
Arch Dis Child 
2023;108:608–615.

 ► Additional supplemental 
material is published online 
only. To view, please visit the 
journal online (http:// dx. doi. 
org/ 10. 1136/ archdischild- 
2022- 325158).
1Population, Policy and Practice, 
UCL Great Ormond Street 
Institute of Child Health, 
London, UK
2Infection, Immunity and 
Inflammation, UCL Great 
Ormond Street Institute of Child 
Health, London, UK
3Child and Adolescent Health 
Unit, University of Zimbabwe, 
Harare, Zimbabwe

Correspondence to
Dr Michelle Heys, Population, 
Policy and Practice, UCL Great 
Ormond Street Institute of Child 
Health, London WC1N 1EH, UK;  
 m. heys@ ucl. ac. uk

MC- B and GC contributed 
equally.

Received 21 November 2022
Accepted 26 March 2023
Published Online First 
27 April 2023

Global child health

© Author(s) (or their 
employer(s)) 2023. Re- use 
permitted under CC BY. 
Published by BMJ.

ABSTRACT
Objective To develop a clinical prediction model to 
diagnose neonatal sepsis in low- resource settings.
Design Secondary analysis of data collected by the 
Neotree digital health system from 1 February 2019 to 
31 March 2020. We used multivariable logistic regression 
with candidate predictors identified from expert opinion 
and literature review. Missing data were imputed using 
multivariate imputation and model performance was 
evaluated in the derivation cohort.
Setting A tertiary neonatal unit at Sally Mugabe 
Central Hospital, Zimbabwe.
Patients We included 2628 neonates aged <72 hours, 
gestation ≥32+0 weeks and birth weight ≥1500 g.
Interventions Participants received standard care 
as no specific interventions were dictated by the study 
protocol.
Main outcome measures Clinical early- onset 
neonatal sepsis (within the first 72 hours of life), defined 
by the treating consultant neonatologist.
Results Clinical early- onset sepsis was diagnosed in 
297 neonates (11%). The optimal model included eight 
predictors: maternal fever, offensive liquor, prolonged 
rupture of membranes, neonatal temperature, respiratory 
rate, activity, chest retractions and grunting. Receiver 
operating characteristic analysis gave an area under the 
curve of 0.74 (95% CI 0.70–0.77). For a sensitivity of 
95% (92%–97%), corresponding specificity was 11% 
(10%–13%), positive predictive value 12% (11%–13%), 
negative predictive value 95% (92%–97%), positive 
likelihood ratio 1.1 (95% CI 1.0–1.1) and negative 
likelihood ratio 0.4 (95% CI 0.3–0.6).
Conclusions Our clinical prediction model achieved 
high sensitivity with low specificity, suggesting it may 
be suited to excluding early- onset sepsis. Future work 
will validate and update this model before considering 
implementation within the Neotree.

INTRODUCTION
Neonatal sepsis caused 15% of the 2.5 million 
neonatal deaths worldwide in 2018 and has a 
mortality rate of 110–190 per 1000 live births.1 2 It 
can be difficult to diagnose as the clinical features 
overlap with non- infectious diseases.3 Failing to 
treat sepsis with timely antimicrobials increases the 
risk of death or disability, but empirical antimicro-
bial therapy in non- infected neonates contributes to 
antimicrobial resistance and adverse outcomes.4 5

Isolating a pathogenic organism from a normally 
sterile site is the gold standard diagnostic method,6 

but has limitations. In low- resource settings (LRS), 
cultures and blood counts are often unavailable,7 or 
turnaround times are too long to usefully inform 
management.8 9 Blood cultures have high sensitivity 
provided sufficient inoculate volume is obtained, 
but sampling can be difficult in unwell neonates.10 
Therefore, clinicians may diagnose sepsis and 
initiate empirical therapy despite negative cultures, 
based on clinical presentation, risk factors and/or 
raised inflammatory markers. This is often called 
‘culture- negative’ sepsis and up to 16 times more 
neonates receive antibiotics for culture- negative 
sepsis than for sepsis with a positive culture.11 Diag-
nostic challenges are increased in LRS where early 
neonatal care may be led by less experienced health-
care professionals (HCPs) without immediate local 
senior support.8

Clinical prediction models combine patient or 
disease characteristics to estimate the probability 
of a diagnosis or outcome.12 Models to diagnose 
neonatal sepsis may improve diagnostic accu-
racy and rationalise antibiotic use. In LRS, they 
could provide clinical decision support for less 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Neonatal sepsis is difficult to diagnose as the 
clinical features are non- specific.

 ⇒ In low- resource settings, early neonatal care 
may be led by less experienced healthcare 
professionals without immediate local senior 
support.

 ⇒ Clinical prediction models exist to diagnose 
neonatal sepsis but there is a need for models 
suitable to implement in low- resource settings.

WHAT THIS STUDY ADDS
 ⇒ Our model has been specifically developed in a 
cohort of neonates from a lower middle- income, 
low- resource neonatal unit in sub- Saharan 
Africa.

 ⇒ It is easy to implement in low- resource settings 
as it does not require laboratory tests.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Our model predicts a diagnosis of early- onset 
sepsis made by an experienced neonatologist 
to support less experienced healthcare 
professionals admitting neonates to the 
neonatal unit.
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experienced HCPs, especially if models do not require labora-
tory tests. Several existing models estimate the probability of 
neonatal sepsis, but few are developed for LRS.13 14

Our objective was to develop a clinical prediction model to 
diagnose neonatal sepsis in an LRS neonatal unit, to support less 
experienced HCPs make this diagnosis.

METHODS
We report methods according to the Transparent Reporting 
of a Multivariable Prediction Model for Individual Prognosis 
or Diagnosis statement (online supplemental file 1).15 Further 
methods are found in online supplemental file 2 and accompa-
nying R code at https://zenodo.org/record/7817247.

Source of data
We performed secondary analysis of data from the Neotree at 
the neonatal unit of Sally Mugabe Central Hospital (SMCH), 
Zimbabwe. Data were collected over 14 months from 1 February 
2019 to 31 March 2020.

The Neotree is an open- source digital health system for 
newborn care in LRS,16 embedded in routine practice at three 
neonatal units in sub- Saharan Africa (Kamuzu Central Hospital, 
Malawi; SMCH, Zimbabwe; and Chinhoyi Provincial Hospital, 
Zimbabwe).17 On admission, HCPs complete an admission form 
using the Neotree application on an Android tablet. The appli-
cation guides assessment of the neonate and collects predefined 
data. At discharge or after neonatal death, HCPs complete an 
outcome form, which includes the final diagnoses or cause(s) of 
death after review by a consultant neonatologist (online supple-
mental file 2, section 1).

Participants
SMCH has the largest of three tertiary neonatal units in 
Zimbabwe, with 100 cots. Most admissions come directly from 
the labour ward or obstetric theatre, but SMCH is also a national 
referral centre for specialist surgical care.

We included neonates with chronological age <72 hours, 
≥32+0 weeks’ gestation at birth and birth weight ≥1500 g. We 
excluded non- first- born multiples and those with a diagnosis 
of major congenital anomaly, no outcome form completed or 
anomalous admission durations (eg, date of discharge before 
date of admission).

Outcome
The primary outcome was clinical early- onset neonatal sepsis 
(EOS), defined as sepsis with onset within the first 72 hours of 
life, as diagnosed by the treating consultant neonatologist and 
recorded on the outcome form as one or more of: (1) primary 
discharge diagnosis, (2) additional problem during admission, 
(3) primary cause of death or (4) contributory cause of death. No 
specific actions were performed to blind outcome assessment.

Predictors
We identified candidate predictors through a modified Delphi 
method study18 and literature review.13 We mapped these predic-
tors to available Neotree data, yielding 22 candidate predictors 
(online supplemental file 2, section 2). No specific actions were 
performed to blind predictor assessment.

Statistical analysis
Analyses were performed in RStudio V.2022.02.0+443 (R 
V.4.1.3).19 20 No specific sample size calculations were performed 
but post hoc calculations are shown in online supplemental file 
2, section 9.

Data preparation
We linked admission and outcome forms using the Fellegi- Sunter 
method of probabilistic record linkage (online supplemental file 
2, section 4).21 22 We imputed missing values using multivariate 
imputation by chained equations assuming missing at random 
with 40 imputed data sets (online supplemental file 2, section 
6).23

Model development and specification
We used multivariable logistic regression to predict diagnosis of 
clinical EOS. For convenience, model selection was performed 
in one data set randomly selected from all imputed data sets. 
First, we fitted a ‘full’ main effects model containing all candi-
date predictors assuming linearity of continuous predictors and 
additivity at the predictor scale. We excluded categorical vari-
ables with skewed distributions (<5% category prevalence in 
either outcome group) if Fisher’s exact test was non- significant 
(p≥0.05) for the  m× n  contingency table. Otherwise, skewed 
categorical predictors were retained, and smaller categories 
combined into an ‘other’ category. Next, we compared plausible 
variations to the full model, selecting the ‘optimal’ model which 
minimised both the Akaike and Bayesian information criteria 
(online supplemental file 2, section 8). We explored non- linear 
effects of continuous predictors with natural cubic spline func-
tions (2–10 df) and polynomial transformations (second- degree 
to fifth- degree polynomials), and tested for interaction between 
birth weight and gestational age. Finally, we fitted the optimal 
model across all imputed data sets and obtained pooled regres-
sion coefficients and their SEs using Rubin’s rules.24

Model performance
We evaluated the performance of the optimal model in the deriva-
tion cohort. Discrimination was quantified by plotting a receiver 
operating characteristic curve in each imputed data set. We pooled 
the area under the curve (AUC) and variance across imputed data sets 
using Rubin’s rules.24 Calibration was assessed by plotting a flexible 
calibration curve with a loess smoother in the single data set used 
for model selection.25 Sensitivity, specificity, predictive values and 
likelihood ratios of the optimal model were estimated in the single 
data set used for model selection. These metrics are presented for 
the ‘optimal’ probability threshold according to Youden’s J statistic,26 

Figure 1 Flow diagram summarising participant inclusion and 
exclusion. Participants could fulfil multiple inclusion and/or exclusion 
criteria, therefore, the sum of participants excluded based on each 
criterion exceeds 949.
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and for thresholds corresponding to sensitivities of 80, 85, 90 and 
95%. CIs for likelihood ratios were obtained using bootstrap with 
10 000 resamples.27

RESULTS
Participants
Of 3577 neonates with matched admission and outcome records, 
2628 (73%) were included (figure 1). Mean gestational age was 
38.0 (SD=2.5) weeks, mean birth weight 2890 (SD=700) g, 
1141 (43%) received ≥1 antibiotic and 221 (8%) died (table 1). 
Clinical EOS was diagnosed in 297 neonates (11%, incidence 
113 per 1000 admissions).

Missing data
In total, 14 variables had missing values. All variables had 
<1% missing values except temperature (31%) and birth 
weight (1.2%). Time since the start of data collection predicted 
missing temperature (OR 0.96, 95% CI 0.96–0.96, p<0.001) 
as a limited number of thermometers were available early in the 
study. Missing temperature was not associated with clinical EOS 
(OR 0.79, 95% CI 0.60–1.03, p=0.08).

Model development
From the set of 22 candidate predictors (table 2), eight were 
excluded due to <5% category prevalence with a non- significant 
Fisher’s exact test (cyanosis, seizures, fontanelle, colour, 

abdominal distention, omphalitis, abnormal skin appearance and 
history of vomiting). Three of the five categories for activity had 
a prevalence of <5% in either outcome group but Fisher’s exact 
test indicated a significant difference in the distribution between 
the two groups (p<0.001). Activity was retained as a predictor 
and the three smaller categories were collapsed into one ‘other’ 
group.

Therefore, 14 candidate predictors were considered for 
model development. Of these, 12 had a significant univariable 
association with clinical EOS (table 3). The strongest univari-
able predictor was maternal fever (OR 6.0, 95% CI 2.1–17.4). 
Neither birth weight (OR 1.14, 95% CI 0.96–1.35) nor grunting 
at triage (OR 1.23, 95% CI 0.95–1.59) predicted clinical EOS in 
univariable models.

Among plausible multivariable models, a model containing 
eight of the 14 candidate predictors was selected as the optimal 
model (online supplemental file 2, section 8). Fitting non- linear 
effects for temperature or birth weight, or allowing for an 
interaction between birth weight and gestational age, did not 
improve fit.

Model specification
The optimal model included eight predictors: temperature at 
admission, respiratory rate, maternal fever during labour, offen-
sive liquor, prolonged rupture of membranes, activity, chest 
retractions and grunting (table 4). It can be written as:

 

 

 
 

LP(EOS)=

−39.4 + 0.99× temperature + 0.06× (respiratory rate divided by 5) + 1.44

× maternal fever during labour + 0.54× offensive liquor + 0.36

× prolonged rupture of membranes + 0.59× lethargy + 0.84

× irritability, seizures or coma + 0.41× chest retractions + 0.18× grunting  , 

 
where LP(EOS) denotes the linear predictor based on the logit 
transformation of the probability of clinical EOS. The proba-
bility of clinical EOS (Pr(EOS)) is thus given by the inverse logit 
function:

 Pr(EOS) = eLP(EOS)

1+ eLP(EOS)  . 

Model performance
The pooled AUC was 0.74 (95% CI 0.70–0.77) (figure 2). The 
calibration intercept was 0.00 (95% CI −0.13 to 0.13), calibra-
tion slope 1.00 (95% CI 0.85–1.15) and the calibration curve 
remained close to the identity line (figure 3).

The ‘optimal’ classification threshold was 0.12 (ie, 12% 
predicted probability of clinical EOS) yielding sensitivity 65% 
(95% CI 59%–70%) and specificity 74% (95% CI 72%–75%) 
(table 5). For a sensitivity of 95%, the corresponding classifi-
cation threshold was 0.03 giving sensitivity 95% (95% CI 
92%–97%) and specificity 11% (95% CI 10%–13%). Corre-
sponding predictive values and likelihood ratios are shown in 
table 5.

DISCUSSION
We developed a clinical prediction model to diagnose clinical EOS 
that can be applied in LRS. The optimal model included eight 
predictors: three perinatal risk factors (maternal fever during 
labour, offensive liquor and prolonged rupture of membranes) 
and five clinical signs in the neonate (temperature, respiratory 
rate, activity on neurological examination, chest retractions and 

Table 1 Characteristics of the study participants

Characteristics Overall No sepsis Sepsis P value

n 2628 2331 297

Admission

  Gestational age (weeks) 38.0 (2.5) 38.0 (2.5) 38.4 (2.3) 0.005

  Birth weight (g) 2890 (700) 2880 (720) 2950 (600) 0.07

  Sex (%) 0.7

   Male 1503 (57) 1338 (57) 165 (56)

   Female 1122 (43) 990 (42) 132 (44)

   Unsure 3 (0.1) 3 (0.1) 0 (0)

  Type of birth (%) 0.03

   Singleton 2496 (95) 2205 (95) 291 (98)

   First- born twin 127 (5) 121 (5) 6 (2)

   First- born triplet 2 (<0.1) 2 (<0.1) 0 (0)

  Mode of delivery (%) 0.07

   SVD 1889 (72) 1663 (71) 226 (76)

   Elective C- section 136 (5) 124 (5) 12 (4)

   Emergency C- section 561 (21) 510 (22) 51 (17)

   Instrumental 42 (1.6) 34 (1.5) 8 (2.7)

  Postnatal age (%) <0.001

   <2 hours of life 1001 (38) 901 (39) 100 (34)

   2–24 hours of life 1257 (48) 1136 (49) 121 (41)

   24–48 hours of life 235 (9) 181 (8) 54 (18)

   48–72 hours of life 110 (4) 91 (4) 19 (7)

Outcome

  Antibiotics (%) 1141 (43) 874 (37) 267 (90) <0.001

  Admission duration (days) 2.3 [1.3–4.9] 2.1 [1.2–4.1] 6.0 [3.5–8.8] <0.001

  Death (%) 221 (8) 184 (8) 37 (12) 0.008

Data are presented as mean (SD), n (%) or median [quartile 1 to quartile 3]. P values are 
from Welch’s two- sample t- test for gestational age and birth weight; the Wilcoxon- Mann- 
Whitney U test for admission duration; Pearson’s χ2 test for postnatal age at admission, 
antibiotics and death; and Fisher’s exact test for sex, type of birth and mode of delivery. 
Summary statistics are presented for the observed data only, before multiple imputation of 
missing values.
C- section, caesarean section; SVD, spontaneous vaginal delivery.
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grunting). Using a classification threshold for high sensitivity 
resulted in low specificity in the derivation cohort.

Interpretation
Incidence of clinical EOS was 113 per 1000 admissions. This 
is greater than a recent estimate for EOS in low- income and 

middle- income countries of 31.1 per 1000 live births (95% CI 
9–100; I2 99.9%),28 but there is marked heterogeneity between 
relatively few studies worldwide.

Our model shares predictors with existing models for neonatal 
sepsis.13 While several models do not require laboratory tests 
(some of which have been validated in LRS), data are limited to 

Table 2 Distributions of candidate predictors in the study cohort

Candidate predictor Overall No sepsis Sepsis P value

n 2628 2331 297

Infant risk factors

  Gestational age (weeks) 38.0 [37.0–40.0] 38.0 [37.0–40.0] 38.0 [37.0–40.0] 0.03

  Birth weight (g) 2950 [2400–3350] 2900 [2400–3350] 3000 [2600–3350] 0.04

Maternal risk factors (%)

  Maternal fever 14 (0.5) 8 (0.3) 6 (2.0) 0.003

  Offensive liquor 163 (6) 131 (6) 32 (11) 0.001

  PROM 303 (12) 257 (11) 46 (15) 0.03

Infant clinical features

  Grunting at triage (%) 750 (29) 654 (28) 96 (32) 0.13

  Cyanosis at triage* (%) 69 (2.6) 60 (2.6) 9 (3.0) 0.6

  Seizures at triage* (%) 14 (0.5) 10 (0.4) 4 (1.3) 0.06

  Respiratory rate (breaths/min) 56 [48–68] 56 [48–68] 60 [50–72] <0.001

  Heart rate (beats/min) 138 [126–146] 138 [126–146] 139 [127–150] 0.01

  Temperature (°C) 36.5 [36.0–37.0] 36.5 [36.0–36.9] 36.9 [36.2–38.0] <0.001

  Fontanelle* (%) 0.9

   Flat 2608 (99) 2312 (99) 296 (100)

   Sunken 10 (0.4) 9 (0.4) 1 (0.3)

   Bulging 10 (0.4) 10 (0.4) 0 (0)

  Activity† (%) <0.001

   Alert 2152 (82) 1933 (83) 219 (74)

   Lethargic 382 (15) 327 (14) 55 (19)

   Irritable 62 (2.4) 45 (1.9) 17 (6)

   Seizures 14 (0.5) 9 (0.4) 5 (1.7)

   Coma 18 (0.7) 17 (0.7) 1 (0.3)

  Nasal flaring (%) 912 (35) 791 (34) 121 (41) 0.02

  Chest retractions (%) 986 (38) 848 (36) 138 (46) <0.001

  Grunting (%) 421 (16) 360 (15) 61 (21) 0.03

  Work of breathing (%) <0.001

   Normal 1405 (54) 1263 (55) 142 (48)

   Mildly increased 413 (16) 378 (16) 35 (12)

   Moderately increased 614 (24) 529 (23) 85 (29)

   Severely increased 170 (6) 139 (6) 31 (11)

  Colour* (%) 0.1

   Pink 2507 (95) 2220 (95) 287 (97)

   Pale 10 (0.4) 7 (0.3) 3 (1.0)

   Blue 62 (2.4) 58 (2.5) 4 (1.3)

   Yellow 49 (1.9) 46 (2.0) 3 (1.0)

  Abdominal distention* (%) 28 (1.1) 26 (1.1) 2 (0.7) 0.8

  Omphalitis* (%) 6 (0.2) 4 (0.2) 2 (0.7) 0.1

  Abnormal skin* (%) 27 (1.0) 23 (1.0) 4 (1.3) 0.5

  Vomiting* (%) 0.3

   No 2605 (99) 2309 (99) 296 (100)

   Yellow 7 (0.3) 7 (0.3) 0 (0)

   Bilious 13 (0.5) 13 (0.6) 0 (0)

   Blood stained 3 (0.1) 2 (<0.1) 1 (0.3)

Data are presented as median [quartile 1 to quartile 3] for continuous predictors or n (%) for categorical predictors. P values are from the Wilcoxon- Mann- Whitney U test for 
continuous predictors and Fisher’s exact test for categorical predictors. Distributions are presented for the observed data only, before multiple imputation of missing values.
*Eliminated from the final set of candidate predictors due to very skewed distributions.
†The three smallest categories of activity were collapsed into one ‘other’ category for model development.
PROM, prolonged rupture of membranes.
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a few small studies and comparisons are challenging as studies 
infrequently report global performance measures such as AUC. 
For example, Weber et al developed a score with 14 clinical 
features to predict neonatal sepsis, meningitis, pneumonia or 
hypoxaemia in LRS countries.29 Validation in the subgroup of 
285 neonates aged ≤6 days of life showed a sensitivity of 95% 
with a specificity of 26% if one or more clinical features were 
present.29

The Kaiser Permanente Early- Onset Sepsis Calculator 
combines perinatal risk factors with clinical appearance to 
recommend management based on the estimated probability 
of EOS in neonates born at ≥34 weeks’ gestation.30 31 Meta- 
analyses suggest its use reduces rates of admission, antibiotic 
use and use of laboratory tests, without increased mortality 

(although some authors have voiced concerns about ‘missed’ or 
delayed diagnoses).32–35 All studies in these meta- analyses were 
from high- income countries.

The Kaiser Permanente Calculator does not require labo-
ratory tests but may be less suited to LRS. First, the base-
line incidences of EOS used are lower than in most LRS.28 30 

Table 3 Univariable association between candidate predictors and outcome

Candidate predictor Coefficient SE OR 95% CI P value

Infant risk factors           

  Gestational age (weeks) 0.067 0.026 1.07 1.02–1.12 0.009

  Birth weight (kg) 0.131 0.087 1.14 0.96–1.35 0.1

Maternal risk factors           

  Maternal fever 1.79 0.544 5.99 2.06–17.4 0.001

  Offensive liquor 0.707 0.208 2.03 1.35–3.05 0.001

  PROM 0.391 0.173 1.48 1.05–2.08 0.02

Infant clinical features           

  Grunting at triage 0.203 0.132 1.23 0.95–1.59 0.1

  Respiratory rate (5 breaths/min) 0.093 0.022 1.10 1.05–1.14 <0.001

  Heart rate (5 beats/min) 0.047 0.019 1.05 1.01–1.09 0.01

  Temperature (°C) 0.886 0.087 2.42 2.04–2.88 <0.001

  Activity           

  Alert—lethargic 0.395 0.162 1.48 1.08–2.04 0.02

  Alert—other 1.05 0.25 2.86 1.75–4.67 <0.001

  Nasal flaring 0.290 0.126 1.34 1.04–1.71 0.02

  Chest retractions 0.417 0.124 1.52 1.19–1.93 0.001

  Grunting 0.346 0.155 1.41 1.04–1.92 0.03

  Work of breathing           

  Normal—mildly increased −0.207 0.197 0.81 0.55–1.20 0.3

  Normal—moderately increased 0.345 0.146 1.41 1.06–1.88 0.02

  Normal—severely increased 0.674 0.217 1.96 1.28–3.00 0.002

Analyses were performed on the complete data after multiple imputation of missing values.
PROM, prolonged rupture of membranes;

Table 4 Predictors and their pooled regression coefficients and ORs 
for the optimal model

Candidate predictor Coefficient SE OR 95% CI P value

Intercept −39.4 3.52

Temperature (°C) 0.987 0.095 2.68 2.23–3.23 <0.001

Respiratory rate (5 
breaths/min)

0.055 0.026 1.06 1.00–1.11 0.04

Maternal fever 1.44 0.612 4.21 1.27–14.0 0.02

Offensive liquor 0.543 0.228 1.72 1.10–2.69 0.02

PROM 0.360 0.192 1.43 0.98–2.09 0.06

Activity (Alert—lethargic) 0.586 0.184 1.80 1.25–2.58 0.002

Activity (Alert—other) 0.840 0.286 2.32 1.32–4.06 0.003

Chest retractions 0.406 0.172 1.50 1.07–2.10 0.02

Grunting 0.179 0.186 1.20 0.83–1.72 0.3

Analyses were performed on the complete data after multiple imputation of missing 
values.
PROM, prolonged rupture of membranes.

Figure 2 Receiver operating characteristic curve for the optimal 
model in each of the 40 imputed data sets. Pooled area under the curve 
(AUC)=0.74 (95% CI 0.70–0.77).
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Second, the calculator was developed in a population where 
Group B Streptococcus (GBS) is the predominant organism 
in EOS and where antenatal GBS screening is performed 
routinely. Finally, descriptors used for clinical presentation 
(‘clinical illness’, ‘equivocal’ and ‘well appearing’) include 
interventions such as mechanical ventilation, which are 
not useful measures of illness in neonatal units where these 
interventions are unavailable. Two studies have validated 
the Kaiser Permanente Calculator in middle- income coun-
tries with variable results.36 37 No studies have validated the 
calculator in low- income countries or sub- Saharan Africa.

Implications
Our model includes clinical predictors and risk factors that are 
simple to identify by any grade of HCP with minimal additional 
training. Acceptable classification thresholds will vary by clin-
ical context. High sensitivity is important to avoid missing true 
cases of sepsis, but higher specificity would reduce inappropriate 
antimicrobial therapy and might be favoured during periods 

of resource shortages to allow treatment of neonates with the 
highest probability of EOS.

Our model may be suited to excluding EOS given its low 
negative likelihood ratio (which represents the change in pretest 
to post- test odds of having EOS given our model classified a 
neonate as ‘no EOS’38). At a classification threshold of 0.03, 
the negative likelihood ratio was 0.4 (95% CI 0.3–0.6): a 60% 
reduction in the odds of EOS for neonates classified as ‘no EOS’. 
In our cohort, the model had a high negative predictive value 
(which represents the probability that a neonate does not have 
EOS if our model classified them as ‘no EOS’38). Approximately 
300 neonates are admitted each month to SMCH.39 With a nega-
tive predictive value of 95% and our EOS prevalence of 113 per 
1000 admissions, we would expect one or two true cases of EOS 
to be missed per month.

We would suggest managing neonates classified as 
having EOS with parenteral antibiotic therapy as per local 
protocols. Management of neonates classified as ‘no EOS’ 
would depend on the chosen classification threshold (and 
resultant negative predictive value) and local HCPs’ and 
families’ attitudes to risk. Neonates are assessed by the 
Neotree on admission to the neonatal unit, suggesting they 
appear unwell to an HCP (nurse, midwife or obstetrician). 
If classified as ‘no EOS’ by our model, neonates should be 
observed and investigated for an alternative diagnosis. It 
may be useful to reapply our model (eg, at 12 hours) to 
update predictions when the clinical picture has evolved. 
This is feasible given median admission duration in our 
cohort was 2.1 (IQR 2.9) days for those without EOS, 
although further research is required to validate the model 
in this context.

Limitations
First, the Neotree collects data at admission and on discharge 
or death. Neonates admitted for ‘safekeeping’ could have 
unremarkable clinical appearance and vital signs on admis-
sion but develop signs of sepsis later during admission.

Second, very preterm and very low birthweight neonates were 
not included. Our study focused on stratifying risk of EOS in 
moderate to late preterm and term neonates, where evidence- 
based recommendations advising against antibiotics might be 
more readily observed.

Third, no specific actions were performed to blind 
outcome assessment. As we performed secondary analysis 
of data from a quality improvement project, the consultant 
neonatologist is unlikely to have been biased in their classi-
fication of EOS.

Fourth, although blood culture is the gold standard 
method for diagnosing EOS, erratic supplies of lab reagents 
meant we could not assess the correlation between positive 

Figure 3 Calibration curve for the optimal model in the single data 
set used for model selection. A flexible curve with pointwise 95% CIs 
(shaded region) was fitted using local regression (loess). Calibration 
intercept=0.00 (95% CI −0.13 to 0.13); calibration slope=1.00 (95% 
CI 0.85–1.15). At the bottom of the figure, a violin plot shows the 
distribution of predicted probabilities for neonates with (1) and without 
(0) sepsis.

Table 5 Model performance at several classification thresholds of predicted probability

Threshold Sensitivity Specificity PPV NPV LR+ LR−

0.121* 65 (59–70) 74 (72–75) 24 (21–27) 94 (93–95) 2.4 (1.6–2.9) 0.5 (0.4–0.6)

0.075 81 (76–85) 44 (42–46) 15 (14–17) 95 (93–96) 1.4 (1.0–1.6) 0.4 (0.4–0.5)

0.067 85 (80–88) 38 (36–40) 15 (13–17) 95 (94–96) 1.4 (1.2–1.6) 0.4 (0.2–0.5)

0.047 90 (86–93) 22 (20–24) 13 (12–14) 95 (92–96) 1.2 (0.9–1.2) 0.4 (0.3–0.6)

0.034 95 (92–97) 11 (10–13) 12 (11–13) 95 (92–97) 1.1 (1.0–1.1) 0.4 (0.3–0.6)

Data are presented for the single data set used for model selection. Numbers in brackets represent the 95% CIs.
*The ‘optimal’ threshold according to Youden’s J statistic.
LR+, positive likelihood ratio; LR−, negative likelihood ratio; NPV, negative predictive value; PPV, positive predictive value;
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blood cultures and the consultant neonatologists’ diagnosis 
of EOS.

Finally, we present model performance in the derivation 
data, which can be optimistic due to overfitting.12

CONCLUSIONS
We developed a prediction model to diagnose clinical EOS using 
eight predictors. For high sensitivity it achieved low specificity, 
suggesting it may be suited to excluding EOS to support HCPs’ 
decisions to withhold antibiotics in non- septic neonates. Our 
future work will examine (1) external validation; (2) accept-
ability and feasibility of implementation via the Neotree; and (3) 
impact of implementation on sepsis- related neonatal morbidity 
and mortality.
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