59 of 70

- Anderson BJ, Allegaert K, Van Den Anker JN, Cossey V, Holford NHG. (2006). Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol:63(1):75–84.
- Germovsek E, Osborne L, Gunaratnam F, Lounis SA, Busquets FB, Sinha AK. (2019). Development and external evaluation of a population pharmacokinetic model for continuous and intermittent administration of vancomycin in neonates and infants using prospectively collected data. J Antimicrob Chemother, 1–9.

Disclosure(s) R. Keizer is an employee and stockholder of InsightRX.

P100

A PRACTICAL FRAMEWORK FOR THE ASSESSMENT OF RISKS AND BENEFITS OF OFF-LABEL PRESCRIBING IN PAEDIATRICS (ARBOP-P)

1.2.3 TM Van der Zanden*, ⁴NJ Vet, ^{3.4,5}SN de Wlldt. ¹Department of Paediatrics, Erasmus MC — Sophia Childrens Hospital, Rotterdam; ²Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen; ³Dutch Knowledge Center Pharmacotherapy for Children, Den Haag; ⁴Department of Paediatric Surgery, Erasmus MC — Sophia Childrens Hospital, Rotterdam; ⁵Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands

10.1136/archdischild-2019-esdppp.138

Background Guidelines for off-label prescribing are emerging. However, these guidelines do not provide practical guidance to assess the risk benefit balance and select the right paediatric dose We, therefore, aimed to develop a practical framework to guide paediatric healthcare professionals to assess the risks and benefits of off-label use.

Methods We have reviewed available literature on the suggested criteria for appropriate off-label use and evaluated these criteria for relevance in paediatrics. For guidance on dose-selection we searched for regulatory guidance on paediatric drug development. Next, the literature was searched for strategies that can be applied to assess the risks and benefits of off-label use. Based on literature findings a framework was proposed to provide practical guidance to physicians for off-label prescribing. Finally, the framework was applied to a case.

Results The following conditions for appropriate off-label use were identified based on available literature: 1. Medical need for off-label use. 2. Off-label use is based on 'high quality evidence'. As 'high quality evidence' in paediatrics is often lacking-, we propose to replace the need for high quality evidence by a positive risk-benefit assessment based on available evidence. 3. Parents and patients are informed. This is not feasible for every single drug prescribed off-label, we propose a graded approach 4. The outcomes of off-label use are followed up.

The PROACT-URL framework⁷ for decision-making as well as the FDA paediatric decision tree⁸ seem helpful tools to guide decisions in real-life practice.

Conclusion We identified important aspects and tools to develop a framework (ARBOP-P) to guide healthcare professionals on how to systematically assess and balance the benefits and risks for off-label use, including dose selection, to ultimately optimize efficacy and safety of paediatric off-label prescribing.

REFERENCES

- Frattarelli DA, Galinkin JL, Green TP, et al. Off-label use of drugs in children. Pediatrics 2014;133:563–7 Online.
- Dooms M, Killick J. Off-label use of medicines: The need for good practice guidelines. Int J Risk Saf Med. 2017;29:17–23 Online.

- Gazarian M, Kelly M, McPhee JR, Graudins LV, Ward RL, Campbell TJ. Off-label use of medicines: consensus recommendations for evaluating appropriateness. *Med J Aust* 2006; 185:544–8 Online.
- Largent EA, Miller FG, Pearson SD. Going off-label without venturing off-course: evidence and ethical off-label prescribing. Arch Intern Med 2009;169:1745–7 Online.
- Ansani N, Sirio C, Smitherman T, et al. Designing a strategy to promote safe, innovative off-label use of medications. Am J Med Qual 2006;21:255–61 Online.
- Weda M, Hoebert J, Vervloet M, et al. Study on the off-label use of medicinal products in the European Union.: www.ec.europa.com 2017.
- Hammond J, Keeney R, Raiffa H. Smart Choices: A practical guide to making better decisions. Boston, MA.: Harvard Business School Press.; 2002.
- Dunne J, Rodriguez WJ, Murphy MD, et al. Extrapolation of adult data and other data in pediatric drug-development programs. Pediatrics. 2011;128:e1242–9 Online.

Disclosure(s) Nothing to disclose

P101

EXTENDING THE DUTCH PAEDIATRIC FORMULARY ACROSS EUROPE: SUCCESSFUL DEVELOPMENT OF COUNTRY SPECIFIC, PARALLEL, PAEDIATRIC DRUG FORMULARIES

1.2.3T Van der Zanden*, ⁴A Neubert, ⁴J Zahn, ⁴S Wimmer, ⁵M de Hoop, ^{6,7}T Rosness, ⁸C Kjeldby-Høie, ^{9,10}A Teigen, ¹¹C Male, ¹¹E Rauch, ¹²F Lagler, ⁴W Rascher, ^{2,3,13}S de Wildt. ¹Department of Paediatrics, Erasmus MC — Sophia Childrens Hospital, Rotterdam; ²Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen; ³Dutch Knowledge Center Pharmacotherapy for Children, Den Haag, The Netherlands; ⁴Department of Paediatrics and Adolescents Medicine, Universitätsklinikum Erlangen, Erlangen, Germany; ⁵KNMP, Den Haag, The Netherlands; ⁶The Norwegian Medicines Manual for Health Personnel; ⁷The Faculty of Mathematics and Natural Sciences, School of Pharmacy; ⁸Sykehusapoteket, Rikshospitalet, Oslo; ⁹Sykehusapoteka Vest HF, Stavanger, ¹⁰Medicines for Children Network, Bergen, Norway; ¹¹Department of Paediatrics, Medical University Vienna, Vienna; ¹²Institute for Inborn Errors of Metabolism, Paracelsus Medical University, Salzburg, Austria; ¹³Department of Paediatric Surgery, Erasmus MC — Sophia Childrens Hospital, Rotterdam, The Netherlands

10.1136/archdischild-2019-esdppp.139

Backgrounds As many drugs in paediatrics are used of off-label, prescribers across Europe face a lack of evidence-based dosing guidelines. The Dutch Paediatric Formulary (DPF) was developed to provide dosing guidelines based on best available evidence from registration data, investigator-initiated research, clinical experience and consensus (1). The DPF has recently joined forces with Germany, Norway and Austria aiming to develop multi-language, parallel, paediatric drug formularies based on the DPF.

Methods

The DPF database and ICT framework were extended to a duplicate database for Germany. The dosing guidelines were translated to German and reviewed for fit with German practice. Relevant drugs and dosing recommendations were selected and country-specific information was added to address country-specific needs. Work-sharing on content development was studied in a small pilot.

Results The German Pediatric Formulary (www.kinderformularium.de) was launched on 1 October 2018 within a German paediatric medication safety project (KiDSafe). At that time 119 of 769 drugs were reviewed and published in the German formulary. The dosing recommendations of the DPF show a good fit with German practice; i.e. adaptations were needed in less than 10% of the cases caused by differences in licensing status, national guidelines or availability of formulations. There were no differences in interpretation of evidence. Nine drugs - highly relevant for German practice, but not listed in the DPF, were added to the German formulary based on SmPC. The content

Arch Dis Child 2019:**104:**e1