Abnormal response of osteoblasts from Hyp mice to 1,25-dihydroxyvitamin D3

Bone. 1992;13(3):209-15. doi: 10.1016/8756-3282(92)90199-7.

Abstract

To further explore the hypothesis of an osteoblast inappropriate response to 1,25-(OH)2D3 in hypophosphatemic vitamin D-resistant rickets (HYP), osteoblasts were isolated from Hyp mice, the animal model for human HYP, and their response to a physiologic dose of 1,25-(OH)2D3 (10(-10) M) was investigated with respect to alkaline phosphatase (ALP) activity and cell proliferation, and compared to that of normal osteoblasts. Cells in secondary culture were incubated for 72 h while in log phase, with or without 1,25-(OH)2D3, at various medium phosphate (P) concentrations ranging from 0.5 to 4.5 mM. Stimulation of ALP activity and inhibition of cell proliferation was induced by 10(-10)M 1,25-(OH)2D3 in normal cells exposed to medium P concentration corresponding to serum levels observed in normal mice (2.1-2.7 mM P). By contrast, Hyp cells failed to respond to 1,25-(OH)2D3 in that range of P concentrations. Stimulation of ALP activity and inhibition of proliferation of mutant cells were evident at higher medium P concentrations (over 3 mM). 1,25-(OH)2D3 at the supraphysiologic level of 10(-9)M had no consistent effect on ALP activity in normal and Hyp mouse osteoblasts, but inhibited cell proliferation in cultures of both genotypes at all P concentrations tested. These results indicate that extracellular P modulates the action of 1,25-(OH)2D3 on osteoblasts, and that this modulation was altered in osteoblasts from Hyp mice. The failure of Hyp cells to respond to a physiologic dose of 1,25-(OH)2D3 upon normal P concentration may reflect the abnormal response of bone to 1,25-(OH)2D3 observed in Hyp mice and HYP patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkaline Phosphatase / metabolism*
  • Animals
  • Calcitriol / pharmacology*
  • Cell Division / drug effects
  • Cells, Cultured
  • Culture Media
  • DNA / analysis
  • Hypophosphatemia, Familial / metabolism*
  • Mice
  • Mice, Inbred BALB C
  • Osteoblasts / cytology
  • Osteoblasts / drug effects*
  • Osteoblasts / enzymology
  • Phosphates / blood*
  • Phosphates / pharmacology

Substances

  • Culture Media
  • Phosphates
  • DNA
  • Alkaline Phosphatase
  • Calcitriol