Skip to main content
Log in

Are Population Pharmacokinetic and/ or Pharmacodynamic Models Adequately Evaluated?

A Survey of the Literature from 2002 to 2004

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Model evaluation is an important issue in population analyses. We aimed to perform a systematic review of all population pharmacokinetic and/or pharmacodynamic analyses published between 2002 and 2004 to survey the current methods used to evaluate models and to assess whether those models were adequately evaluated.

We selected 324 articles in MEDLINE using defined key words and built a data abstraction form composed of a checklist of items to extract the relevant information from these articles with respect to model evaluation. In the data abstraction form, evaluation methods were divided into three subsections: basic internal methods (goodness-of-fit [GOF] plots, uncertainty in parameter estimates and model sensitivity), advanced internal methods (data splitting, resampling techniques and Monte Carlo simulations) and external model evaluation.

Basic internal evaluation was the most frequently described method in the reports: 65% of the models involved GOF evaluation. Standard errors or confidence intervals were reported for 50% of fixed effects but only for 22% of random effects. Advanced internal methods were used in approximately 25% of models: data splitting was more often used than bootstrap and cross-validation; simulations were used in 6% of models to evaluate models by a visual predictive check or by a posterior predictive check. External evaluation was performed in only 7% of models.

Using the subjective synthesis of model evaluation for each article, we judged the models to be adequately evaluated in 28% of pharmacokinetic models and 26% of pharmacodynamic models. Basic internal evaluation was preferred to more advanced methods, probably because the former is performed easily with most software. We also noticed that when the aim of modelling was predictive, advanced internal methods or more stringent methods were more often used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Table II
Table III
Fig. 3

Similar content being viewed by others

References

  1. Sheiner LB, Steimer JL. Pharmacokinetic/pharmacodynamic modeling in drag development. Annu Rev Pharmacol Toxicol 2000; 40: 67–95

    Article  PubMed  CAS  Google Scholar 

  2. Aarons L, Karlsson MO, Mentre F, et al. Role of modelling and simulation in phase I drag development. Eur J Pharm Sci 2001; 13: 115–22

    Article  PubMed  CAS  Google Scholar 

  3. Jochemsen R, Laveille C, Breimer DD. Application of pharmacokinetic/pharmacodynamic modelling and population approaches to drug development. Int J Pharm Med 1999; 13: 243–51

    Google Scholar 

  4. Holford NH, Kimko HC, Monteleone JP, et al. Simulation of clinical trials. Annu Rev Pharmacol Toxicol 2000; 40: 209–34

    Article  PubMed  CAS  Google Scholar 

  5. Lesko LJ, Rowland M, Peck CC, et al. Optimizing the science of drug development: opportunities for better candidate selection and accelerated evaluation in humans. Pharm Res 2000; 17: 1335–44

    Article  PubMed  CAS  Google Scholar 

  6. Kimko HC, Duffull SB. Simulation for designing clinical trials: a pharmacokinetic-pharmacodynamic modeling prospective. New York: Marcel Dekker, 2003

    Google Scholar 

  7. Girard P. Clinical trial simulation: a tool for understanding study failures and preventing them. Basic Clin Pharmacol Toxicol 2005; 96: 228–34

    Article  PubMed  CAS  Google Scholar 

  8. Girard P, Cucherat M, Guez D. Clinical trial simulation in drug development. Therapie 2004; 59: 287–95, 297-304

    Article  PubMed  Google Scholar 

  9. Mentré F, Ebelin ME. Validation of population pharmacokinetic/pharmacodynamic analyses: review of proposed approaches. In: Balant LP, Aarons L, Danhof M, et al., editors. European cooperation in the field of scientific and technical research. The population approach: measuring and managing variability in response concentration and dose. Brussels: Commission of the European Communities, 1997

    Google Scholar 

  10. US FDA. Guidance for industry: population pharmacokinetics [online]. Available from URL: http://www.fda.gov/cder/guidance/1852fnl.pdf [Accessed 2006 Dec 28]

  11. Yano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn 2001; 28: 171–92

    Article  PubMed  CAS  Google Scholar 

  12. Committee for Medicinal Products for Human Use, European Medicines Agency. Draft guideline on reporting the results of population pharmacokinetic analyses [online]. Available from URL: http://www.emea.eu.int/pdfs/human/ewp/18599006en.pdf [Accessed 2006 Dec 28]

  13. Wade JR, Edholm M, Salmonson T. A guide for reporting the results of population pharmacokinetic analyses: a Swedish perspective. AAPS J 2005; 7: 456–60

    Article  Google Scholar 

  14. Ette EI. Stability and performance of a population pharmacokinetic model. J Clin Pharmacol 1997; 37: 486–95

    PubMed  CAS  Google Scholar 

  15. Boutron I, Tubach F, Giraudeau B, et al. Methodological differences in clinical trials evaluating nonpharmacological and pharmacological treatments of hip and knee osteoarthritis. J Am Stat Assoc 2003; 290: 1060–70

    Google Scholar 

  16. Brendel K, Dartois C, Comets E, Lemenuel-Diot A, Laffont CM, Girard P, Mentré F. Data abstraction form for population PK/PD publications [online]. Available from URL: http://www.bichat.inserm.fr/equipes/Emi0357/download.html [Accessed 2006 Dec 28]

  17. Sheiner LB. Analysis of pharmacokinetic data using parametric models. 3: hypothesis tests and confidence intervals. J Pharmacokinet Biopharm 1986; 14: 539–55

    PubMed  CAS  Google Scholar 

  18. Efron B. Bootstrap methods: another look at the jackknife. Ann Stat 1979; 7: 1–26

    Article  Google Scholar 

  19. Efron B, Gong G. A leisurely look at the bootstrap, the jackknife and cross-validation. Am Stat 1983; 37: 36–48

    Google Scholar 

  20. Belin TR, Rubin DB. The analysis of repeated-measures data on schizophrenic reaction times using mixture models. Stat Med 1995; 14: 747–68

    Article  PubMed  CAS  Google Scholar 

  21. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. London: Chapman and Hall, 2004

    Google Scholar 

  22. Girard P, Blaschke TF, Kastrissios H, et al. A Markov mixed effect regression model for drug compliance. Stat Med 1998; 17: 2313–33

    Article  PubMed  CAS  Google Scholar 

  23. Cox EH, Veyrat-Follet C, Beal SL, et al. A population pharmacokinetic-pharmacodynamic analysis of repeated measures time-to-event pharmacodynamic responses: the antiemetic effect of ondansetron. J Pharmacokinet Biopharm 1999; 27: 625–44

    PubMed  CAS  Google Scholar 

  24. Duffull SB, Chabaud S, Nony P, et al. A pharmacokinetic simulation model for ivabradine in healthy volunteers. Eur J Pharm Sci 2000; 10: 285–94

    Article  PubMed  CAS  Google Scholar 

  25. Friberg LE, Freijs A, Sandstrom M, et al. Semiphysiological model for the time course of leukocytes after varying schedules of 5-fluorouracil in rats. J Pharmacol Exp Ther 2000; 295: 734–40

    PubMed  CAS  Google Scholar 

  26. Chabaud S, Girard P, Nony P, et al. Clinical trial simulation using therapeutic effect modeling: application to ivabradine efficacy in patients with angina pectoris. J Pharmacokinet Pharmacodyn 2002; 29: 339–63

    Article  PubMed  CAS  Google Scholar 

  27. Duffull SB, Kirkpatrick CM, Green B, et al. Analysis of population pharmacokinetic data using NONMEM and WinBUGS. J Biopharm Stat 2005; 15: 53–73

    Article  PubMed  Google Scholar 

  28. Jadhav PR, Gobburu JV. A new equivalence based metric for predictive check to qualify mixed-effects models. AAPS J 2005; 7: E523–31

    Article  PubMed  Google Scholar 

  29. Shi J, Kovacs SJ, Wang Y, et al. Population pharmacokinetics of the active metabolite of leflunomide in pediatric subjects with polyarticular course juvenile rheumatoid arthritis. J Pharmacokinet Pharmacodyn 2005; 32: 419–39

    Article  PubMed  CAS  Google Scholar 

  30. van Kesteren C, Zandvliet AS, Karlsson MO, et al. Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs 2005; 23: 225–34

    Article  PubMed  CAS  Google Scholar 

  31. Zingmark PH, Kagedal M, Karlsson MO. Modelling a spontaneously reported side effect by use of a Markov mixed-effects model. J Pharmacokinet Pharmacodyn 2005; 32: 261–81

    Article  PubMed  Google Scholar 

  32. Williams PJ, Ette EI. Determination of model appropriateness. New York: Marcel Dekker, 2003

    Google Scholar 

  33. Cohen L. A coefficient of agreement for nominal scales. Educ Psychol Meas 1960: 37-46

  34. Fleiss J. Statistical methods for rates and proportions. 2nd ed. New York, 1981

  35. Kloft C, Graefe EU, Tanswell P, et al. Population pharmacokinetics of sibrotuzumab, a novel therapeutic monoclonal antibody, in cancer patients. Invest New Drugs 2004; 22: 39–52

    Article  PubMed  CAS  Google Scholar 

  36. Shen M, Schilder RJ, Obasaju C, et al. Population pharmacokinetic and limited sampling models for carboplatin administered in high-dose combination regimens with peripheral blood stem cell support. Cancer Chemother Pharmacol 2002; 50: 243–50

    Article  PubMed  CAS  Google Scholar 

  37. Bonate PL, Floret S, Bentzen C. Population pharmacokinetics of APOMINE: a meta-analysis in cancer patients and healthy males. Br J Clin Pharmacol 2004; 58: 142–55

    Article  PubMed  Google Scholar 

  38. Rajagopalan P, Gastonguay MR. Population pharmacokinetics of ciprofloxacin in pediatric patients. J Clin Pharmacol 2003; 43: 698–710

    PubMed  CAS  Google Scholar 

  39. Meagher AK, Forrest A, Rayner CR, et al. Population pharmacokinetics of linezolid in patients treated in a compassionate-use program. Antimicrob Agents Chemother 2003; 47: 548–53

    Article  PubMed  CAS  Google Scholar 

  40. Ishibashi T, Yano Y, Oguma T. Population pharmacokinetics of platinum after nedaplatin administration and model validation in adult patients. Br J Clin Pharmacol 2003; 56: 205–13

    Article  PubMed  CAS  Google Scholar 

  41. El Desoky ES, Fuseau E, El Din Amry S, et al. Pharmacokinetic modelling of valproic acid from routine clinical data in Egyptian epileptic patients. Eur J Clin Pharmacol 2004; 59: 783–90

    Article  PubMed  CAS  Google Scholar 

  42. Rajagopalan P, Pelz RK, Lipsett PA, et al. Enteral fluconazole population pharmacokinetics in patients in the surgical intensive care unit. Pharmacotherapy 2003; 23: 592–602

    Article  PubMed  CAS  Google Scholar 

  43. Sale M, Salder BM, Stein DS. Pharmacokinetic modeling and simulations of interaction of amprenavir and ritonavir. Antimicrob Agents Chemother 2002; 46: 746–54

    Article  PubMed  CAS  Google Scholar 

  44. Pfister M, Martin NE, Haskell LP, et al. Optimizing dose selection with modeling and simulation: application to the vasopeptidase inhibitor M100240. J Clin Pharmacol 2004; 44: 621–31

    Article  PubMed  CAS  Google Scholar 

  45. Ambrose PG, Bhavnani SM, Cirincione BB, et al. Gatifloxacin and the elderly: pharmacokinetic-pharmacodynamic rationale for a potential age-related dose reduction. J Antimicrob Chemother 2003; 52: 435–40

    Article  PubMed  CAS  Google Scholar 

  46. Comets E, Ikeda K, Hoff P, et al. Comparison of the pharmacokinetics of S-1, an oral anticancer agent, in Western and Japanese patients. J Pharmacokinet Pharmacodyn 2003; 30: 257–83

    Article  PubMed  CAS  Google Scholar 

  47. Butterworth J, Lin YA, Prielipp R, et al. The pharmacokinetics and cardiovascular effects of a single intravenous dose of protamine in normal volunteers. Anesth Analg 2002; 94: 514–22

    Article  PubMed  CAS  Google Scholar 

  48. Knibbe CA, Melenhorst-de Jong G, Mestrom M, et al. Pharmacokinetics and effects of propofol 6% for short-term sedation in paediatric patients following cardiac surgery. Br J Clin Pharmacol 2002; 54: 415–22

    Article  PubMed  CAS  Google Scholar 

  49. Olofsen E, Sleigh JW, Dahan A. The influence of remifentanil on the dynamic relation between sevoflurane and surrogate anesthetic effect measures derived from the EEG. Anesthesiology 2002; 96: 555–64

    Article  PubMed  CAS  Google Scholar 

  50. Retout S, Mentré F, Bruno R. Fisher information matrix for non-linear mixed-effects models: evaluation and application for optimal design of enoxaparin population pharmacokinetics. Stat Med 2002; 21: 2623–39

    Article  PubMed  Google Scholar 

  51. Mallet A. A maximum likelihood estimation method for random coefficient regression models. Biometrika 1986; 73: 645–56

    Article  Google Scholar 

  52. Wakefield J. The Bayesian analysis of population pharmacokinetic models. J Am Stat Assoc 1996; 91: 62–75

    Article  Google Scholar 

  53. Roecker EB. Prediction error and its estimation for subsetselected models. Technometrics 1991; 33: 316–31

    Article  Google Scholar 

  54. Mentré F, Escolano S. Prediction discrepancies for the evaluation of nonlinear mixed-effects models. J Pharmacokinet Pharmacodyn 2005; 33: 345–67

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Brendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brendel, K., Dartois, C., Comets, E. et al. Are Population Pharmacokinetic and/ or Pharmacodynamic Models Adequately Evaluated?. Clin Pharmacokinet 46, 221–234 (2007). https://doi.org/10.2165/00003088-200746030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746030-00003

Keywords

Navigation