Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the contact-phase system on bacterial surfaces—a clue to serious complications in infectious diseases

Abstract

Fever, hypotension and bleeding disorders are common symptoms of sepsis and septic shock. The activation of the contact-phase system is thought to contribute to the development of these severe disease states by triggering proinflammatory and procoagulatory cascades; however, the underlying molecular mechanisms are obscure. Here we report that the components of the contact-phase system are assembled on the surface of Escherichia coli and Salmonella through their specific interactions with fibrous bacterial surface proteins, curli and fimbriae. As a consequence, the proinflammatory pathway is activated through the release of bradykinin, a potent inducer of fever, pain and hypotension. Absorption of contact-phase proteins and fibrinogen by bacterial surface proteins depletes relevant coagulation factors and causes a hypocoagulatory state. Thus, the complex interplay of microbe surface proteins and host contact-phase factors may contribute to the symptoms of sepsis and septic shock.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Risberg, B., Andreasson, S. & Eriksson, E. Disseminated intravascular coagulation. Acta Anaesthesiol. Scand. Suppl. 95, 60–71 (1991).

    Article  CAS  Google Scholar 

  2. Müller-Esterl, W.,Kinnogens, kinins and kinships. Thromb. Haemost. 61, 2–6 (1989).

    Article  Google Scholar 

  3. Colman, R.W. & Schmaier, A.H. The contact activation system: Biochemistry and interactions of these surface-mediated defence reactions. Crit. Rev. Oncol. Hematol. 5, 57–85 (1986).

    Article  CAS  Google Scholar 

  4. Kaplan, A.P. & Silverberg, M. The coagulation-kinin pathway of human plasma. Blood 70, 1–15 (1987).

    CAS  PubMed  Google Scholar 

  5. Hall, J.M. Bradykinin receptors: Pharmacological prpperties biological roles. Pharmacol. Ther. 56, 131–190 (1992).

    Article  CAS  Google Scholar 

  6. Olsén, A., Jonsson, A. & Normark, S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338, 652–655 (1989).

    Article  Google Scholar 

  7. Collinson, S.K., Emody, L., Müller, K.H., Trust, T.J. Kay, W.W. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J. Bacteriol. 173, 4773–4781 (1991).

    Article  CAS  Google Scholar 

  8. Olsén, A., Arnqvist, A., Hammar, M., Sukupolvi, S. & Normark, S., The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol. Microbiol. 7, 523–536 (1993).

    Article  Google Scholar 

  9. Collinson, S.K. et al. Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J. Bacteriol. 175, 12–18 (1993).

    Article  CAS  Google Scholar 

  10. Sjöbring, U., Pohl, C. & Olsén, A., Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol. Microbiol. 14, 443–452 (1994).

    Article  Google Scholar 

  11. Ben Nasr, A.B., Olsén, A., Sjöbring, U., Muller-Esterl, W. & Björck, L. Assembly of human contact phase factors and release of bradykinin at the surface of curli-ex-pressing Escherichia coli. Mol. Microbiol. 20, 927–935 (1996).

    Article  CAS  Google Scholar 

  12. Sukupolvi, S., Edelstein, A., Rhen, M., Normark, S.J. & Pfeifer, J.D. Development of a murine model of chronic Salmonella infection. Infect. Immun. 65, 838–842 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Furie, B. & Furie, B.C. The molecular basis of blood coagulation. Cell 53, 505–518 (1988).

    Article  CAS  Google Scholar 

  14. Müller-Esterl, W., Johnson, D., Salvesen, G. & Barrett, A.A. Human kininogens. Methods Enzymol. 163, 240–256 (1988).

    Article  Google Scholar 

  15. Ponjee, G.A., Vader, H.L. de Wild, P.J., Janssen, G.W. & van der Graaf, F. One-step chromogenic equivalent of activated partial thromboplastin time evaluated for clinical application. Clin. Chem. 37, 1235–1244 (1991).

    CAS  PubMed  Google Scholar 

  16. Scott, C.F., Whitaker, E.J., Hammond, B.F. & Colman, R.W. Purification and characterization of a potent 70-kDa thiol lysyl-proteinase (Lys-gingivain) from Porphyromonas gingivalis that cleaves kininogens and fibrinogen. J. Biol. Chem. 268, 7935–7942 (1993).

    CAS  PubMed  Google Scholar 

  17. Herwald, H., Collin, M., Müller-Esterl, W. & Bjorck, L. Streptococcal cysteine proteinase releases kinins: A novel virulence mechanism. J. Exp. Med. 184, 665–673 (1996).

    Article  CAS  Google Scholar 

  18. Ubben, D. & Schmitt, R. Tn1721 derivatives for transposon mutagenesis, restriction mapping and nucleotide sequence analysis. Gene 41, 145–152 (1986).

    Article  CAS  Google Scholar 

  19. Evans, D.G., Evans, D.J.J. & Tjoa, W. Hemagglutination of human group A erythro-cytes by enterotoxigenic Escherichia coli isolated from adults with diarrhea: Correlation with colonization factor. Infect. Immun. 18, 330–337 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasan, A.A., Cines, D.B., Zhang, J. & Schmaier, A.H. The carboxyl terminus of bradykinin and amino terminus of the light chain of kininogens comprise an endothelial cell binding domain. J. Biol. Chem. 269, 31822–31830 (1994).

    CAS  PubMed  Google Scholar 

  21. Hock, J., Vogel, R., Linke, R.P. & Müller-Esterl, W. High molecular weight kininogen-binding site of prekallikrein probed by monoclonal antibodies. J. Biol. Chem. 265, 12005–12011 (1990).

    CAS  PubMed  Google Scholar 

  22. Fraker, P.J. & Speck, S.C.J. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem. Biophys. Res. Commun. 80, 849–857 (1978).

    Article  CAS  Google Scholar 

  23. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  24. Egberg, N. & Heedman, P.A. Simplified performance of amidolytic factor X assay. Thromb. Res. 25, 437–440 (1982).

    Article  CAS  Google Scholar 

  25. Becker, U., Bartl, K. & Wahlefeld, A.W. A functional photometric assay for plasma fibrinogen. Thromb. Res. 35, 475–484 (1984).

    Article  CAS  Google Scholar 

  26. Odegard, O.R., Lie, M. & Abildgaard, U. Heparin cofactor activity measured with an amidolytic method. Thromb. Res. 6, 287–294 (1975).

    Article  CAS  Google Scholar 

  27. Nilsson, I.M. Haemorrhagic and Thrombotic Diseases. 217–218 (Wiley and Sons, London, UK, 1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herwald, H., Mörgelin, M., Olsén, A. et al. Activation of the contact-phase system on bacterial surfaces—a clue to serious complications in infectious diseases. Nat Med 4, 298–302 (1998). https://doi.org/10.1038/nm0398-298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0398-298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing